

1.1

1.1.1

1.1.1.1

1.1.1.2

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.6.1

1.3.6.1.1

1.3.6.1.2

1.3.6.1.3

1.3.6.1.4

1.3.6.1.5

1.4

1.4.1

1.4.1.1

1.4.2

1.4.2.1

Table	of	Contents
OpenTX	2.2	Lua	Reference	Guide

Introduction

Acknowledgments

Getting	Started

Part	I	-	Script	Type	Overview

Mix	Scripts

Telemetry	Scripts

One-Time	Scripts

Wizard	Script

Function	Scripts

Widget	Scripts

Theme	Scripts

Part	II	-	OpenTX	Lua	API	Programming	Guide

Input	Table	Syntax

Output	Table	Syntax

Init	Function	Syntax

Run	Function	Syntax

Return	Statement	Syntax

Included	Lua	Libraries

io	Library

io.open()

io.close()

io.read()

io.write()

io.seek()

Part	III	-	OpenTX	Lua	API	Reference

Constants

Key	Event	Constants

General	Functions

GREY()

2

1.4.2.2

1.4.2.3

1.4.2.4

1.4.2.5

1.4.2.6

1.4.2.7

1.4.2.8

1.4.2.9

1.4.2.10

1.4.2.11

1.4.2.12

1.4.2.13

1.4.2.14

1.4.2.15

1.4.2.16

1.4.2.17

1.4.2.18

1.4.2.19

1.4.2.20

1.4.2.21

1.4.2.22

1.4.2.23

1.4.2.24

1.4.2.26

1.4.2.27

1.4.2.25

1.4.3

1.4.3.1

1.4.3.2

1.4.3.3

1.4.3.4

1.4.3.5

1.4.3.6

1.4.3.7

crossfireTelemetryPop()

crossfireTelemetryPush()

defaultChannel(stick)

defaultStick(channel)

getDateTime()

getFieldInfo(name)

getFlightMode(mode)

getGeneralSettings()

getRAS()

getRSSI()

getTime()

getValue(source)

getVersion()

killEvents(key)

loadScript(file	[,	mode],	[,env])

playDuration(duration	[,	hourFormat])

playFile(name)

playHaptic(duration,	pause	[,	flags])

playNumber(value,	unit	[,	attributes])

playTone(frequency,	duration,	pause	[,	flags	[,	freqIncr]])

popupConfirmation(title,	event)

popupInput(title,	event,	input,	min,	max)

popupWarning(title,	event)

setTelemetryValue(id,	subID,	instance,	value	[,	unit	[,	precision	[,	name]]])

sportTelemetryPop()

sportTelemetryPush()

Model	Functions

model.defaultInputs()

model.deleteInput(input,	line)

model.deleteInputs()

model.deleteMix(channel,	line)

model.deleteMixes()

model.getCurve(curve)

model.getCustomFunction(function)

3

1.4.3.8

1.4.3.9

1.4.3.10

1.4.3.11

1.4.3.12

1.4.3.13

1.4.3.14

1.4.3.15

1.4.3.16

1.4.3.17

1.4.3.18

1.4.3.19

1.4.3.20

1.4.3.21

1.4.3.22

1.4.3.23

1.4.3.24

1.4.3.25

1.4.3.26

1.4.3.27

1.4.3.28

1.4.4

1.4.4.1

1.4.4.2

1.4.4.3

1.4.4.4

1.4.4.5

1.4.4.6

1.4.4.7

1.4.4.8

1.4.4.9

1.4.4.10

1.4.4.11

model.getGlobalVariable(index	[,	flight_mode])

model.getInfo()

model.getInput(input,	line)

model.getInputsCount(input)

model.getLogicalSwitch(switch)

model.getMix(channel,	line)

model.getMixesCount(channel)

model.getModule(index)

model.getOutput(index)

model.getTimer(timer)

model.insertInput(input,	line,	value)

model.insertMix(channel,	line,	value)

model.resetTimer(timer)

model.setCurve(curve,	params)

model.setCustomFunction(function,	value)

model.setGlobalVariable(index,	flight_mode,	value)

model.setInfo(value)

model.setLogicalSwitch(switch,	value)

model.setModule(index,	value)

model.setOutput(index,	value)

model.setTimer(timer,	value)

Lcd	Functions

Lcd	Functions	Overview

lcd.RGB(r,	g,	b)

lcd.clear([color])

lcd.drawBitmap(bitmap,	x,	y	[,	scale])

lcd.drawChannel(x,	y,	source,	flags)

lcd.drawCombobox(x,	y,	w,	list,	idx	[,	flags])

lcd.drawFilledRectangle(x,	y,	w,	h	[,	flags])

lcd.drawGauge(x,	y,	w,	h,	fill,	maxfill	[,	flags])

lcd.drawLine(x1,	y1,	x2,	y2,	pattern,	flags)

lcd.drawNumber(x,	y,	value	[,	flags])

lcd.drawPixmap(x,	y,	name)

4

1.4.4.12

1.4.4.13

1.4.4.14

1.4.4.15

1.4.4.16

1.4.4.17

1.4.4.18

1.4.4.19

1.4.4.20

1.4.4.21

1.4.4.22

1.4.4.23

1.4.5

1.4.5.1

1.4.5.2

1.5

1.5.1

1.5.2

1.5.3

1.6

1.7

1.7.1

1.7.2

1.7.3

1.8

1.8.1

1.8.2

lcd.drawPoint(x,	y)

lcd.drawRectangle(x,	y,	w,	h	[,	flags	[,	t]])

lcd.drawScreenTitle(title,	page,	pages)

lcd.drawSource(x,	y,	source	[,	flags])

lcd.drawSwitch(x,	y,	switch,	flags)

lcd.drawText(x,	y,	text	[,	flags])

lcd.drawTimer(x,	y,	value	[,	flags])

lcd.getLastLeftPos()

lcd.getLastPos()

lcd.getLastRightPos()

lcd.refresh()

lcd.setColor(area,	color)

Bitmap	Functions

Bitmap.getSize(name)

Bitmap.open(name)

Part	IV	-	Converting	OpenTX	2.0	Scripts

General	Issues

Handling	GPS	Sensor	data

Handling	Lipo	Sensor	Data

Part	V	-	Converting	OpenTX	2.1	Scripts

Part	VI	-	Advanced	Topics

Lua	data	sharing	across	scripts

Debugging	techniques

Speed/memory	optimizaton	tricks

Part	VII	-	Appendix

Fonts

Units

5

OpenTX	2.2	Lua	Reference	Guide

Join	the	chat	at	https://opentx.rocket.chat

Go	to	https://opentx.gitbooks.io/opentx-2-2-lua-reference-guide/content/	for	the	latest
published	version	of	this	guide.

This	guide	covers	the	development	of	user-written	scripts	for	R/C	transmitters	running	the
OpenTX	2.2	operating	system	with	Lua	support.	Readers	should	be	familiar	with	OpenTX,
the	OpenTX	Companion,	and	know	how	to	transfer	files	the	SD	card	in	the	transmitter.

Part	I	of	the	guide	shows	how	to	enable	Lua	support	for	Taranis	and	includes	basic
examples	of	each	types	of	script.

Part	II	is	a	programming	guide	that	introduces	the	types	of	OpenTX	Lua	scripts	and	how	to
use	them.

Part	III	is	the	OpenTX	Lua	API	Reference

Part	IV	addresses	common	issues	in	converting	Lua	scripts	that	were	originally	written	for
OpenTX	2.0

Part	V	addresses	common	issues	in	converting	Lua	scripts	that	were	originally	written	for
OpenTX	2.1

Part	VI	covers	advanced	topics	with	examples

last	updated	on	2017/08/27	14:51:27	UTC

OpenTX	2.2	Lua	Reference	Guide

6

https://opentx.rocket.chat
https://opentx.gitbooks.io/opentx-2-2-lua-reference-guide/content/

Introduction
This	section	includes	Acknowledgments	and	Getting	Started.

Introduction

7

Acknowledgments

The	OpenTX	team	has	no	intention	of	making	a	profit	from	their	work.	OpenTX	is	free	and
open	source	and	will	remain	free	and	open	source.	But	OpenTX	is	more	expensive	to
maintain	than	most	open	source	projects.	The	reason	is	that	there	is	a	never	ending	flood	of
hardware	to	integrate	and	maintain	code	for.	Hardware	that	costs.

Another	reason	is	that	OpenTX	maintains	a	build	server	that	serves	firmware	compiled	on
demand.	This	is	where	OpenTX	Companion	orders	your	customized	firmware.	The	server	is
not	for	free	and	the	bandwidth	is	ever	increasing	with	tens	of	thousands	of	firmware
downloads	each	month.

The	OpenTX	team	is	grateful	to	those	who	have	donated	to	the	project.	You	have	helped
making	OpenTX	and	OpenTX	Companion	great.

The	Github	Donor	List	is	updated	at	each	OpenTX	release.

If	you	would	like	to	contribute	to	OpenTX,	donations	are	welcome	and	appreciated:

Acknowledgments

8

https://github.com/opentx/opentx/blob/master/DONATIONS.txt
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=DJ9MASSKVW8WN

Getting	Started

Downloading	OpenTX	Companion

OpenTX	Companion	2.2	is	available	for	download	at	http://www.open-tx.org/downloads.html

Updating	firmware	with	Lua	option	selected

If	you	intend	to	use	mixer	scripts,	when	updating	the	firmware	on	your	transmitter	you	need
to	make	sure	the	lua	option	is	checked	in	the	settings	for	your	radio	profile	(Main	menu	->
Settings	->Settings...)	as	shown	below.	This	is	not	required	if	you	only	intend	to	run
telemetry,	one-time	and	function	scripts,	support	for	those	is	included	by	default.

Also	note	that	the	SD	Structure	path	should	contain	a	valid	path	to	a	copy	of	your
transmitter's	SD	card	contents,	although	that's	not	specific	to	Lua.

Getting	Started

9

http://www.open-tx.org/downloads.html

Edit	Settings	dialog	from	OpenTX	Companion

Getting	Started

10

Part	I	-	Script	Type	Overview
This	section	introduces	the	types	of	Lua	scripts	supported	by	OpenTX	and	how	they	may	be
used.

Part	I	-	Script	Type	Overview

11

Mix	Scripts
WARNING	-	Do	not	use	Lua	mix	scripts	for	controlling	any	aspect	of	your	model	that
could	cause	a	crash	if	script	stops	executing.

Description
Each	model	can	have	several	mix	scripts	associated	with	it.	These	scripts	are	run
periodically	for	entire	time	that	model	is	selected.	These	scripts	behave	similar	to	standard
OpenTX	mixers	but	at	the	same	time	provide	much	more	flexible	and	powerful	tool.

Mix	scripts	take	one	or	more	values	as	inputs,	do	some	calculation	or	logic	processing
based	on	them	and	output	one	or	more	values.	Each	run	of	a	script	should	be	as	short	as
possible.	Exceeding	the	script	execution	runtime	limit	will	result	in	the	script	being	forcefully
stopped	and	disabled.

Typical	uses
replacement	for	complex	mixes	that	are	not	critical	to	model	function
complex	processing	of	inputs	and	reaction	to	their	current	state	and/or	their	history
filtering	of	telemetry	values

Limitations
cannot	update	LCD	screen	or	perform	user	input.
should	not	exceed	allowed	run-time/	number	of	instructions.
mix	scripts	are	run	with	less	priority	than	built-in	mixes.	Their	execution	period	is	around
30ms	and	is	not	guaranteed!
can	be	disabled/killed	anytime	due	to	logic	errors	in	script,	not	enough	free	memory,
etc...)

Location
Place	them	on	SD	card	in	folder	/SCRIPTS/MIXES/.	File	name	length	(without	extension)
must	be	6	characters	or	less	(this	limit	was	8	characters	in	OpenTX	2.1).

Mix	Scripts

12

Lifetime
script	is	loaded	from	SD	card	when	model	is	selected
script	init	function	is	called
script	run	function	is	periodically	called	(inside	GUI	thread,	period	cca	30ms)
script	is	killed	(stopped	and	disabled)	if	it	misbehaves	(too	long	runtime,	error	in	code,
low	memory)
all	mix	scripts	are	stopped	while	one-time	script	is	running	(see	Lua	One-time	scripts)

Disabled	script

If	as	script	output	is	used	as	a		mixer	source		and	the	script	is	killed	for	what	ever	reason,
then		the	whole	mixer	line	is	disabled	!	This	can	be	used	for	example	to	provide	a	fall-back
in	case	Lua	mixer	script	gets	killed.

Example	where	Lua	mix	script	is	used	to	drive	ailerons	in	some	clever	way,	but	control	falls
back	to	the	standard	aileron	mix	if	script	is	killed.	Second	mixer	line	replaces	the	first	one
when	the	script	is	alive:

CH1		[I4]Ail	Weight(+100%)

		:=	LUA4b	Weight(+100%)

Script	interface	definition
Every	script	must	include	a	return	statement	at	the	end,	that	defines	its	interface	to	the	rest
of	OpenTX	code.	This	statement	defines:

script	input	table	(optional,	see	Input	Table	Syntax)
script	output	table	(optional,	see	Output	Table	Syntax)
script	init	function	(optional,	see	Init	Function	Syntax)
script	run	function	(see	Run	Function	Syntax)

Example	(interface	only):

Mix	Scripts

13

local	input	{}

local	output	{}

local	function	init_func()

end

local	function	run_func()

end

return	{	input=input,	output=output,	run=run_func,	init=init_func	}

Notes:

inputs	table	defines	input	parameters	(name	and	source)	to	run	function	(see	Input
Table	Syntax)
outputs	table	defines	names	for	values	returned	by	run	function	(see	Output	Table
Syntax)
init_func()	function	is	called	once	when	script	is	loaded.
run_func()	function	is	called	periodically

Mix	Scripts

14

Telemetry	Scripts

General	description
Telemetry	scripts	are	used	for	building	customized	screens.	Each	model	can	have	up	to
three	active	scripts	as	configured	on	the	model's	telemetry	configuration	page.	The	same
script	can	be	assigned	to	multiple	models.

File	Location
Scripts	are	located	on	the	SD	card	in	the	folder	/SCRIPTS/TELEMETRY/<name>.lua.	File
name	length	(without	extension)	must	be	6	characters	or	less	(this	limit	was	8	characters
in	OpenTX	2.1).

Lifetime	of	telemetry	script
Telemetry	scripts	are	started	when	the	model	is	loaded.

script	init	function	is	called
script	background	function	is	periodically	called	when	custom	telemetry	screen	is	not
visible.	Notice:

In	OpenTX	2.0	this	function	is	not	called	when	the	custom	telemetry	screen	is
visible.
Starting	from	OpenTX	2.1	this	function	is	always	called	no	matter	if	the	custom
screen	is	visible	or	not.

script	run	function	is	periodically	called	when	custom	telemetry	screen	is	visible
script	is	stopped	and	disabled	if	it	misbehaves	(too	long	runtime,	error	in	code,	low
memory)
all	telemetry	scripts	are	stopped	while	one-time	script	is	running	(see	Lua	One-time
scripts)

Script	interface	definition
Every	script	must	include	a	return	statement	at	the	end,	that	defines	its	interface	to	the	rest
of	OpenTX	code.	This	statement	defines:

Telemetry	Scripts

15

script	init	function	(optional)
script	background	function
script	run	function

Example	(interface	only):

local	function	init_func()

		--	init_func	is	called	once	when	model	is	loaded

end

local	function	bg_func()

		--	bg_func	is	called	periodically	(always,	the	screen	visibility	does	not	matter)

end

local	function	run_func(event)

		--	run_func	is	called	periodically	only	when	screen	is	visible

end

return	{	run=run_func,	background=bg_func,	init=init_func		}

Notes:

	init_func()		function	is	called	once	when	script	is	loaded	and	begins	execution.

	bg_func()		is	called	periodically,	the	screen	visibility	does	not	matter.

	run_func(event)		function	is	called	periodically	when	custom	telemetry	screen	is	visible.
The		event		parameter	indicates	which	transmitter	button	has	been	pressed	(see	Key
Events).	This	is	the	time	when	the	script	has	full	control	of	the	LCD	screen	and	keys	and
should	draw	something	on	the	screen.

Telemetry	Scripts

16

One-Time	Scripts
Overview

One-Time	scripts	start	when	called	upon	by	a	specific	radio	function	or	when	the	user
selects	them	from	a	contextual	menu.	They	do	their	task	and	are	then	terminated	and
unloaded.	Please	note	that	all	persistent	scripts	are	halted	during	the	execution	of	one	time
scripts.	They	are	automatically	restarted	once	the	one	time	script	is	finished.	This	is	done	to
provide	enough	system	resources	to	execute	the	one	time	script.

WARNING!	-

Running	a	One-Time	script	will	suspend	execution	of	all	other	currently	loaded	Lua
scripts	(Mix,	Telemetry,	and	Functions)

File	Location

Place	them	anywhere	on	SD	card,	the	folder	/SCRIPTS/	is	recommended.	The	only
exception	is	official	model	wizard	script,	that	should	be	put	into	/SCRIPTS/WIZARD/	folder
that	way	it	will	start	automatically	when	new	model	is	created.

Lifetime	of	One-Time	scripts

Script	is	executed	when	user	selects	Execute	on	a	script	file	from	SD	card	browser	screen.

Script	executes	until:

it	returns	value	different	from	0
is	forcefully	closed	by	user	by	long	press	of	EXIT	key
is	forcefully	closed	by	system	if	if	it	misbehaves	(too	long	runtime,	error	in	code,	low
memory)

One-Time	Scripts

17

Wizard

TODO:	Need	to	determine	status	of	wizard	in	2.2

Wizard	Script

18

Function	Scripts
Overview

Function	scripts	are	invoked	via	the	'Lua	Script'	option	of	Special	Functions	configuration
page.

Companion	Special	Functions	Window

Taranis	Special	Functions	Display

Typical	uses

specialized	handling	in	response	to	switch	position	changes
customized	announcements

Limitations

should	not	exceed	allowed	run-time/	number	of	instructions.
all	function	scripts	are	stopped	while	one-time	script	is	running	(see	Lua	One-time

Function	Scripts

19

scripts)
Function	scripts	DO	NOT	HAVE	ACCESS	TO	LCD	DISPLAY

Location

Place	them	on	SD	card	in	folder	/SCRIPTS/FUNCTIONS/

Lifetime

script	init	function	is	called	once	when	model	is	loaded
script	run	function	is	periodically	called	as	long	as	switch	condition	is	true
script	is	stopped	and	disabled	if	it	misbehaves	(too	long	runtime,	error	in	code,	low
memory)

Script	interface	definition

Every	script	must	include	a	return	statement	at	the	end,	that	defines	its	interface	to	the	rest
of	OpenTX	code.	This	statement	defines:

script	init	function	(optional,	see	Init	Function	Syntax)
script	run	function	(see	Run	Function	Syntax)

Example	(interface	only):

local	function	init_func()

end

local	function	run_func()

end

return	{	run=run_func,	init=init_func	}

Notes:

local	variables	retain	their	values	for	as	long	as	the	model	is	loaded	regardless	of	switch
condition	value

Advanced	example	(save	as	/SCRIPTS/FUNCTIONS/cntdwn.lua)

The	script	below	is	an	example	of	customized	countdown	announcements.	Note	that	the	init
function	determines	which	version	of	OpenTX	is	running	and	sets	the	unit	parameter	for
playNumber()	accordingly.

local	lstannounce

Function	Scripts

20

local	target

local	running	=	false

local	duration	=	120	--	two	minute	countdown

local	announcements	=	{	120,	105,	90,	75,	60,	55,	50,	45,	40,	35,	30,	29,	28,	27,	26,	

25,	24,	23,	22,	21,	20,	19,	18,	17,	16,	15,	14,	13,	12,	11,	10,	9,	8,	7,	6,	5,	4,	3,	2

,	1,	0}

local	annIndex

local	minUnit

local	function	init()

		local	version	=	getVersion()

		if	version	<	"2.1"	then

				minUnit	=	16		--	unit	for	minutes	in	OpenTX	2.0

		elseif	version	<	"2.2"	then

				minUnit	=	23		--	unit	for	minutes	in	OpenTX	2.1

		else

				minUnit	=	25		--	unit	for	minutes	in	OpenTX	2.2

		end

end

local	function	run()

		local	timenow	=	getTime()	--	10ms	tick	count

		local	remaining

		local	minutes

		local	seconds

		if	not	running	then

				running	=	true

				target	=	timenow	+	(duration	*	100)

				annIndex	=	1

		end

		remaining	=	math.floor(((target	-	timenow)	/	100)	+	.7)	--		+.7	adjust	for	announcem

ent	lag

		if	remaining	<	0	then

				running	=	false	--	we	were	'paused'	and	missed	zero

				return

		end

		while	remaining	<	announcements[annIndex]	do

				annIndex	=	annIndex	+	1	--	catch	up	in	case	we	were	paused

		end

		if	remaining	==	announcements[annIndex]	then

				minutes	=	math.floor(remaining	/	60)

				seconds	=	remaining	%	60

				if	minutes	>	0	then

						playNumber(minutes,	minUnit,	0)

Function	Scripts

21

				end

				if	seconds	>	0	then

						playNumber(seconds,	0,	0)

				end

				annIndex	=	annIndex	+	1

		end

		if	remaining	<=	0	then

				playNumber(0,0,0)

				running	=	false

		end

end

return	{	init=init,	run=run	}

Function	Scripts

22

Widgets	(HORUS	ONLY)	Scripts

General	description

Widgets	are	small	scripts	that	show	some	info	in	a	'zone'	in	one	of	the	model	specific	user
defined	(telemetry)	screens.	You	can	define	those	screens	within	the	telemetry	menu	on	the
HORUS.

Each	model	can	have	up	to	five	custom	screens,	with	up	to	8	widgets	per	screen,	depending
on	their	size	and	layout.	Each	instance	of	a	widget	has	his	own	custom	settings.

File	Location

Widgets	are	located	on	the	SD	card,	each	in	their	specific	folder
/WIDGETS/<name>/main.lua	(name	must	be	in	8	characters	or	less).

Lifetime	of	widgets

Widgets	need	to	be	registered	through	the	telemetry	setup	menu.

widget	create	function	is	called
widget	update	function	is	called	upon	registration	and	at	change	of	settings	in	the
telemetry	setup	menu.
widget	background	function	is	periodically	called	when	custom	telemetry	screen	is	not
visible.	Notice:

This	is	different	from	the	way	telemetry	scripts	are	handled
widget	refresh	function	is	periodically	called	when	custom	telemetry	screen	is	visible
widget	is	stopped	and	disabled	if	it	misbehaves	(too	long	runtime,	error	in	code,	low
memory)
all	widgets	are	stopped	while	one-time	script	is	running	(see	Lua	One-time	scripts)

Once	registered,	widgets	are	started	when	the	model	is	loaded.

Script	interface	definition

Every	widget	must	include	a	return	statement	at	the	end,	that	defines	its	interface	to	the	rest
of	OpenTX	code.	This	statement	defines:

widget	name	(name	must	be	a	string	of	10	characters	or	less)
widget	options	array	(maximum	five	options	are	allowed,	10	character	names	max,	no

Widget	Scripts

23

spaces!)
widget	create	function
widget	update	function
script	background	function
script	refresh	function

Example	(draws	a	moving	counter	that	counts	only	when	not	visible):

local	defaultOptions	=	{

		{	"ControlX",	SOURCE,	1	},

		{	"ScrollZ",	BOOL,	1	},	--	BOOL	is	actually	not	a	boolean,	but	toggles	between	0	and

	1

		{	"StepZ",	VALUE,	1,	0,	10},

		{	"COLOR",	COLOR,	RED	},

}

local	function	createWidget(zone,	options)

		lcd.setColor(CUSTOM_COLOR,	options.COLOR)

		--		the	CUSTOM_COLOR	is	foreseen	to	have	one	color	that	is	not	radio	template	relate

d,	but	it	can	be	used	by	other	widgets	as	well!

		local	someVariable	=	0

		local	anotherVariable	=	{xWidget=0,	yWidget	=	0}

		return	{	zone=zone,	options=options	,	someVariable	=	someVariable,	anotherVariable=a

notherVariable	}

end

local	function	updateWidget(widgetToUpdate,	newOptions)

		widgetToUpdate.options	=	newOptions

		lcd.setColor(CUSTOM_COLOR,	widgetToUpdate.options.COLOR)

		--		the	CUSTOM_COLOR	is	foreseen	to	have	one	color	that	is	not	radio	template	relate

d,	but	it	can	be	used	by	other	widgets	as	well!

end

local	function	backgroundProcessWidget(widgetToProcessInBackground)

		local	function	process(...)

										return	...	+	1

								end

		widgetToProcessInBackground.someVariable	=	process	(widgetToProcessInBackground.some

Variable)

end

local	function	refreshWidget(widgetToRefresh)

		local	counterLength	=	50

		local	counterHeight	=	30

		--backgroundProcessWidget(widgetToRefresh)	

		--background	is	not	called	automatically	in	display	mode,	so	do	it	here	if	you	need	

it.

		local	function	anotherProcess(parameter,step,maxParameter)

										return	(parameter	+	step)	%	maxParameter

Widget	Scripts

24

								end

		widgetToRefresh.anotherVariable.xWidget	

				=	anotherProcess	(widgetToRefresh.anotherVariable.xWidget

						,getValue(widgetToRefresh.options.ControlX)/10.24/20	

						,widgetToRefresh.zone.w-counterLength)

		widgetToRefresh.anotherVariable.yWidget	

				=	anotherProcess	(widgetToRefresh.anotherVariable.yWidget

						,(widgetToRefresh.options.ScrollZ==1)	and	widgetToRefresh.options.StepZ	or	0

						,widgetToRefresh.zone.h-counterHeight)

		lcd.drawNumber(widgetToRefresh.anotherVariable.xWidget	+	widgetToRefresh.zone.x

				,	widgetToRefresh.anotherVariable.yWidget	+	widgetToRefresh.zone.y

				,	widgetToRefresh.someVariable

				,	LEFT	+	DBLSIZE	+	CUSTOM_COLOR);

end

return	{	name="MovingCntr",	options=defaultOptions,	create=createWidget,	update=update

Widget

		,	refresh=refreshWidget,	background=backgroundProcessWidget	}

Notes:

options	are	only	passed	through	to	OpenTX	to	be	used	on	widget	creation.	Don't
change	them	during	operation,	this	has	no	effect.
create()	function	is	called	once	when	widget	is	loaded	and	begins	execution.
update()	function	is	called	once	when	widget	is	loaded	and	begins	execution.
background()	is	called	periodically	when	custom	telemetry	screen	containing	widget	is
not	visible.
refresh()	function	is	called	periodically	when	custom	telemetry	screen	containing	wodget
is	visible.

in	the	example	given,	you	can	see	that	no	global	variables	or	functions	are	needed	to
operate	the	widget.

variables	that	are	used	throughout	the	widget,	can	best	be	declared	inside	the	create
function	as	local	variables
those	local	variablkes	can	then	be	passed	through	to	the	other	functions	as	an	element
of	the	widget	array	that	is	returned

Widget	Scripts

25

Theme	Scripts

Theme	Scripts

26

Part	II	-	OpenTX	Lua	API	Programming
Guide
This	section	provides	more	specifics	on	the	OpenTX	Lua	implementation.	Here	you	will	find
syntax	rules	for	interface	tables	and	functions.	Also	included	is	a	table	showing	which	of	the
available	Lua	libraries	are	accessible	to	OpenTx	scripts.

Part	II	-	OpenTX	Lua	API	Programming	Guide

27

Input	Table	Syntax
Overview

The	input	table	defines	what	values	are	available	as	input(s)	to	mix	scripts.	There	are	two
forms	of	input	table	entries.

SOURCE	syntax

{	"<name>",	SOURCE	}

SOURCE	inputs	provide	the	current	value	of	a	selected	OpenTX	variable.	The	source
must	set	by	the	user	when	the	mix	script	is	configured.	Source	can	be	any	value
OpenTX	knows	about	(inputs,	channels,	telemetry	values,	switches,	custom
functions,...).
Note:	typical	range	is	-1024	thru	+1024.	Simply	divide	the	input	value	by	10.24	to
interpret	as	a	percentage	from	-100%	to	+100%.

VALUE	syntax

{	"<name>",	VALUE,	<min>,	<max>,	<default>	}

VALUE	inputs	provide	a	constant	value	that	is	set	by	the	user	when	the	mix	script	is
configured.

name	-	maximum	length	of	8	characters
min	-	minimum	value	of	-128
max	-	maximum	value	of	127
default	-	must	be	within	the	valid	range	specified

Maximum	of	6	inputs	per	script	(warning	:	was	8	in	2.1)

Example	using	a	SOURCE	and	a	VALUE

Input	Table	Syntax

28

local	input	=

				{

								{	"Strength",	SOURCE},																--	user	selects	source	(typically	slider

	or	knob)

								{	"Interval",	VALUE,	0,	100,	0	}				--	interval	value,	default	=	0.

				}

local	function	run(strength,	interval)

				--	variable	strength	will	contain	the	current	slider	value

				--	variable	interval	is	set	by	the	user	and	constant	through	script	lifetime

				--	this	script	has	no	return	value	but	may	use	playFile()	to	alert	user

				return

end

return	{input=input,	run=run}

Input	Table	Syntax

29

Output	Table	Syntax
Overview

Outputs	are	only	used	in	mix	scripts.	The	output	table	defines	only	name(s),	the	actual
values	are	determined	by	the	script's	run	function.

{	"<name1>",	"<name2>"	}

Example:

local	output	{	"Val1",	"Val2"	}

local	function	run()

				return	0,	-1024	--	these	values	will	be	available	in	OpenTX	as	Val1	and	Val2

end

return	{output=output,	run=run}

Notes:

Output	name	is	limited	to	four	characters.

A	maximum	of	6	outputs	are	supported

Number	Format	Outputs	are	16	bit	signed	integers	when	they	leave	Lua	script	and	are
then	divided	by	10.24	to	produce	output	value	in	percent:

Script	Return	Value Mix	Value	in	OpenTX

0 0%

996 97.2%

1024 100%

-1024 -100%

Output	Table	Syntax

30

Init	Function	Syntax
If	defined,	init	function	is	called	right	after	the	script	is	loaded	from	SD	card	and	begins
execution.	Init	is	called	only	once	before	the	run	function	is	called	for	the	first	time.

local	function	<init_function_name>()

		--	code	here	runs	only	once	when	the	model	is	loaded

end

Input	Parameters:

none

Return	values:

none

Init	Function	Syntax

31

Run	Function	Syntax
The	run	function	is	the	function	that	is	periodically	called	for	the	lifetime	of	script	execution.
Syntax	of	the	run	function	is	different	between	mix	scripts	and	telemetry	scripts.

Run	Function	for	Mix	Scripts

local	function	<run_function_name>([first	input,	[second	input],	…])

			--	if	mix	has	no	return	values

			return

			--	if	mix	has	two	return	values

			return	value1,	value2

end

Input	parameters:

zero	or	more	input	values,	their	names	are	arbitrary,	their	meaning	and	order	is	defined
by	the	input	table.	(see	Input	Table	Syntax)

Return	values:

none	-	if	output	table	is	empty	(i.e.	script	has	no	output)	values
-	or	-
comma	separated	list	of	output	values,	their	order	and	meaning	is	defined	by	the
output	table.	(see	Output	Table	Syntax)

Run	Function	for	Telemetry	Scripts

local	function	<run_function_name>(key-event)

		return	0	--	values	other	than	zero	will	halt	the	script

end

Input	parameters:

The	key-event	parameter	indicates	which	transmitter	button	has	been	pressed	(see	Key
Events)

Run	Function	Syntax

32

Return	values:

A	non-zero	return	value	will	halt	the	script

Run	Function	Syntax

33

Return	Statement	Syntax
The	return	statment	is	the	last	statement	in	an	OpenTX	Lua	script.	It	defines	the	input/output
table	values	and	functions	used	to	run	the	script.

Parameters	init,	input	and	output	are	optional.	If	a	script	doesn't	use	them,	they	can	be
omitted	from	return	statement.

Example	without	init	and	output:

local	inputs	=	{	{	"Aileron",	SOURCE	},	{	"Ail.	ratio",	VALUE,	-100,	100,	0	}	}

local	function	run_func(ail,	ratio)

				--	do	some	stuff

				if	(ail	>	50)	and	(ratio	<	40)	then

								playFile("foo.wav")				

				end

end

--	script	that	only	uses	input	and	run

return	{	run=run_func,	input=inputs	}

	

Return	Statement	Syntax

34

The	following	Lua	libraries	are	available	in
OpenTx

Lua	Standard	Libraries Included

package -

coroutine -

table -

io since	OpenTX	2.1.0	(with	limitations)

os -

string since	OpenTX	2.1.7

bit32 since	OpenTX	2.1.0

math since	OpenTX	2.0.0

debug -

Included	Lua	Libraries

35

io	library
The	io	library	has	been	simplified	and	only	a	subset	of	functions	and	their	functionality	is
available.	What	follows	is	a	complete	reference	of	io	functions	that	are	available	to	OpenTX
scripts

Available	functions:
io.open()
io.close()
io.read()
io.write()
io.seek()

Examples

Read	the	whole	file

--	this	is	an	OpenTX	stand-alone	script

local	function	run(event)

		print("lua	io.read	test")									--	print()	statements	are	visible	in	Debug	output	

window

		local	f	=	io.open("foo.bar",	"r")

		while	true	do

				local	data	=	io.read(f,	10)					--	read	up	to	10	characters	(newline	char	also	cou

nts!)

				if	#data	==	0	then	break	end				--	we	get	zero	length	string	back	when	we	reach	en

d	of	the	file

				print("data:	"..data)

				end

		io.close(f)

		return	1

end

return	{		run=run	}

Append	data	to	file

io	Library

36

--	this	is	an	OpenTX	stand-alone	script

local	function	run(event)

		print("lua	io.write	test")

		local	f	=	io.open("foo.bar",	"a")								--	open	file	in	append	mode

		io.write(f,	"first	line\r\nsecond	line\r\n")

		io.write(f,	4,	"\r\n",	35.6778,	"\r\n")		--	one	can	write	multiple	items	at	the	same

	time

		local	foo	=	-4.45

		io.write(f,	foo,	"\r\n")

		io.close(f)

		return	1				--	this	will	end	the	script	execution

end

return	{	run=run	}

io	Library

37

io.open(<filename>	[,	<mode>])
The	io.open()	function	is	used	to	open	the	file	on	SD	card	for	subsequent	reading	or	writing.
After	the	script	is	done	with	the	file	manipulation	io.close()	function	should	be	used.

Notice:	this	functions	is	fully	functional	from	OpenTX	2.1.5.

Parameters

	filename		full	path	to	the	file	starting	from	the	SD	card	root	directory.	This	function	can't
create	a	new	file	in	non-existing	directory.

	mode		supported	mode	strings	are:

	"r"		read	access.	File	must	exist	beforehand.	The	read	pointer	is	located	at	the
beginning	of	file.	This	is	the	default	mode	if	is	omitted.

	"w"		write	access.	File	is	opened	or	created	(if	it	didn't	exist)	and	truncated	(all
existing	file	contents	are	lost).

"a"	write	access.	File	is	opened	or	created	(if	it	didn't	exist)	and	write	pointer	is
located	at	the	end	of	the	file.	The	existing	file	contents	are	preserved.

Return	value

	<file	object>		if	file	was	successfully	opened.

	nil		if	file	could	not	be	opened.

io	Library

38

io.close(<file	object>)
The	io.close()	function	is	used	to	close	open	file.

Parameters

	file	object		a	file	object	that	was	returned	by	the	io.open()	function.

Return	value

none

io	Library

39

io.read(<file	object>	,	<length>)
The	io.read()	function	is	used	to	read	data	from	the	file	on	SD	card.

Notice:	other	read	commands	(like	"all",	etc..)	are	*not	supported.

Parameters

	file	object		a	file	object	that	was	returned	by	the	io.open()	function.	The	file	must	be
opened	in	read	mode.

	length		number	of	characters/bytes	to	read.	The	number	of	actual	read/returned
characters	can	be	less	if	the	file	end	is	reached.

Return	value

	<string>		a	string	with	a	length	equal	or	less	than

	""		a	zero	length	string	if	the	end	of	file	was	reached

io	Library

40

io.write(<file	object>	,	<data>[,	<data>,	...])
The	io.write()	function	is	used	to	write	data	to	the	file	on	SD	card.

Parameters

	file	object		a	file	object	that	was	returned	by	the	io.open()	function.	The	file	must	be
opened	in	write	or	append	mode.

	data		any	Lua	type	that	can	be	converted	into	string.	If	more	than	one	data	parameter
is	used	their	contents	are	written	to	the	file	by	one	in	the	same	order	as	they	are
specified.

Return	value

	<file	object>		if	data	was	successfully	opened.

	nil,	<error	string>,	<error	number>		if	the	data	can't	be	written.

io	Library

41

io.seek(<file	object>	,	<offset>)
The	io.seek()	function	is	used	to	move	the	current	read/write	position.

Notice:	other	read	standard	seek	bases	(like	"cur",	"end")	are	not	supported.

Parameters

	file	object		a	file	object	that	was	returned	by	the	io.open()	function.

	offset		position	the	read/write	file	pointer	at	the	specified	offset	from	the	beginning	of
the	file.	If	specified	offset	is	bigger	than	the	file	size,	then	the	pointer	is	moved	to	the
end	of	the	file.

Return	value

	0		success

	<number>		any	other	value	means	failure.

io	Library

42

Part	III	-	OpenTX	Lua	API	Reference

Part	III	-	OpenTX	Lua	API	Reference

43

Constants

Constants

44

Key	Events
This	page	describes	the	value	that	is	passed	to	scripts	in	the		event		parameter.	It	is	used	in
Telemetry	and	One-Time	scripts.

The	key	event	mechanism
Each	time	a	key	is	pressed,	held	and	released	a	number	of	events	get	generated.	Here	is	a
typical	flow:

when	a	key	is	pressed	a		FIRST		event	is	generated
if	the	key	continues	to	be	pressed,	then	after	a	while	a		LONG		event	is	generated
if	the	key	continues	to	be	pressed,	then	a		REPEAT		events	are	being	generated
when	the	key	is	released	a		BREAK		event	is	generated

Couple	of	examples:

a	short	press	on	key	would	generate:		FIRST	,		BREAK	
a	longer	pres	on	key	would	generate:		FIRST	,		LONG	,		BREAK	
even	longer	press:		FIRST	,		LONG	,		REPEAT,	REPEAT,	...,		BREAK	

This	normal	key	event	sequence	can	be	altered	with	the	killEvents(key)	function.	Any	time
this	function	is	called	(after	the		FIRST		event)	all	further	key	events	for	this	key	will	be
suppressed	until	the	next	key	press	of	this	key.	Examples:

kill	immediately	after	the	key	press	would	generate:		FIRST	
kill	after	the	long	key	press	would	generate:		FIRST	,		LONG	

Constants
The		event		parameter	in	the	Telemetry	and	One-Time	scripts	run	function	actually	carries
two	pieces	of	information:

key	number
type	of	event

The	two	fields	are	combined	into	one	single	number.	Some	of	these	combinations	are
defined	as	constants	and	are	available	to	Lua	scripts:

Key	Event	Constants

45

Key	Event	Name Comments

EVT_MENU_BREAK MENU	key	release

EVT_PAGE_BREAK PAGE	key	release

EVT_PAGE_LONG MENU	key	long	press

EVT_ENTER_BREAK ENT	key	release

EVT_ENTER_LONG ENT	key	long	press

EVT_EXIT_BREAK EXIT	key	release

EVT_PLUS_BREAK +	key	release

EVT_MINUS_BREAK -	key	release

EVT_PLUS_FIRST +	key	press

EVT_MINUS_FIRST -	key	press

EVT_PLUS_REPT +	key	repeat

EVT_MINUS_REPT -	key	repeat

Radios	with	rotary	encoder	(X7	and	Horus)	have	also:

Key	Event	Name Comments

EVT_ROT_BREAK rotary	encoder	release

EVT_ROT_LONG rotary	encoder	long	press

EVT_ROT_LEFT rotary	encoder	rotated	left

EVT_ROT_RIGHT rotary	encoder	rotated	right

Key	Event	Constants

46

General	Functions

General	Functions

47

GREY()
Returns	gray	value	which	can	be	used	in	LCD	functions

@status	current	Introduced	in	2.0.13

Parameters

none

Return	value

	(number)		a	value	that	represents	amount	of	greyness	(from	0	to	15)

Notice

Only	available	on	Taranis	X9	series	(212x64	displays)

GREY()

48

crossfireTelemetryPop()
Pops	a	received	Crossfire	Telemetry	packet	from	the	queue.

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	nil		queue	does	not	contain	any	(or	enough)	bytes	to	form	a	whole	packet

	multiple		returns	2	values:

command	(number)
packet	(table)	data	bytes

crossfireTelemetryPop()

49

crossfireTelemetryPush()
This	functions	allows	for	sending	telemetry	data	toward	the	TBS	Crossfire	link.

When	called	without	parameters,	it	will	only	return	the	status	of	the	output	buffer	without
sending	anything.

@status	current	Introduced	in	2.2.0

Parameters

	command		command

	data		table	of	data	bytes

Return	value

	boolean		data	queued	in	output	buffer	or	not.

crossfireTelemetryPush()

50

defaultChannel(stick)
Get	channel	assigned	to	stick.	See	Default	Channel	Order	in	General	Settings

@status	current	Introduced	in	2.0.0

Parameters

	stick		(number)	stick	number	(from	0	to	3)

Return	value

	number		channel	assigned	to	this	stick	(from	0	to	3)

	nil		stick	not	found

defaultChannel(stick)

51

defaultStick(channel)
Get	stick	that	is	assigned	to	a	channel.	See	Default	Channel	Order	in	General	Settings.

@status	current	Introduced	in	2.0.0

Parameters

	channel		(number)	channel	number	(0	means	CH1)

Return	value

	number		Stick	assigned	to	this	channel	(from	0	to	3)

defaultStick(channel)

52

getDateTime()
Return	current	system	date	and	time	that	is	kept	by	the	RTC	unit

Parameters

none

Return	value

	table		current	date	and	time,	table	elements:
	year		(number)	year
	mon		(number)	month
	day		(number)	day	of	month
	hour		(number)	hours
	min		(number)	minutes
	sec		(number)	seconds

Examples

general/getDateTime-example

local	function	run(e)

		local	datenow	=	getDateTime()

		lcd.clear()

		lcd.drawText(1,1,"getDateTime()	example",0)

		lcd.drawText(1,11,"year,	mon,	day:	",	0)

		lcd.drawText(lcd.getLastPos()+2,11,datenow.year..",	"..datenow.mon..",	"..datenow.da

y,0)

		lcd.drawText(1,21,"hour,	min,	sec:	",	0)

		lcd.drawText(lcd.getLastPos()+2,21,datenow.hour..",	"..datenow.min..",	"..datenow.se

c,0)

end

return{run=run}

getDateTime()

53

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/general/getDateTime-example.lua

getDateTime()

54

getFieldInfo(name)
Return	detailed	information	about	field	(source)

The	list	of	valid	sources	is	available:

OpenTX	Version Radio

2.0 all

2.1 X9D	and	X9D+,	X9E

2.2 X9D	and	X9D+,	X9E,	Horus

@status	current	Introduced	in	2.0.8,	'unit'	field	added	in	2.2.0

Parameters

	name		(string)	name	of	the	field

Return	value

	table		information	about	requested	field,	table	elements:

	id		(number)	field	identifier
	name		(string)	field	name
	desc		(string)	field	description
'unit'	(number)	unit	identifier	Full	list

	nil		the	requested	field	was	not	found

Examples

general/getFieldInfo-example

getFieldInfo(name)

55

http://downloads-20.open-tx.org/firmware/lua_fields.txt
http://downloads-21.open-tx.org/firmware/lua_fields_taranis.txt
http://downloads-21.open-tx.org/firmware/lua_fields_taranis_x9e.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x9d.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x9e.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x12s.txt
https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/general/getFieldInfo-example.lua

local	function	run(e)

		local	fieldinfo	=	getFieldInfo('rs')

		lcd.clear()

		lcd.drawText(1,1,"getFieldInfo()	example",0)

		if	fieldinfo	then	

				lcd.drawText(1,11,"id:	",	0)

				lcd.drawText(lcd.getLastPos()+2,11,fieldinfo['id'],0)

				lcd.drawText(1,21,"name:	",	0)

				lcd.drawText(lcd.getLastPos()+2,21,fieldinfo['name'],0)

				lcd.drawText(1,31,"desc:	",	0)

				lcd.drawText(lcd.getLastPos()+2,31,fieldinfo['desc'],0)

		else

				lcd.drawText(1,11,"Requested	field	not	available!",	0)				

		end

end

return{run=run}

getFieldInfo(name)

56

getFlightMode(mode)
Return	flight	mode	data.

@status	current	Introduced	in	2.1.7

Parameters

	mode		(number)	flight	mode	number	to	return	(0	-	8).	If	mode	parameter	is	not	specified
(or	contains	invalid	value),	then	the	current	flight	mode	data	is	returned.

Return	value

	multiple		returns	2	values:
(number)	(current)	flight	mode	number	(0	-	8)
(string)	(current)	flight	mode	name

getFlightMode(mode)

57

getGeneralSettings()
Returns	(some	of)	the	general	radio	settings

@status	current	Introduced	in	2.0.6,		imperial		added	in	TODO,		language		and		voice	
added	in	2.2.0.

Parameters

none

Return	value

	table		with	elements:
	battMin		(number)	radio	battery	range	-	minimum	value
	battMax		(number)	radio	battery	range	-	maximum	value
	imperial		(number)	set	to	a	value	different	from	0	if	the	radio	is	set	to	the
IMPERIAL	units
	language		(string)	radio	language	(used	for	menus)
	voice		(string)	voice	language	(used	for	speech)

Examples

general/getGeneralSettings-example

local	function	run(e)

		local	settings	=	getGeneralSettings()

		lcd.clear()

		lcd.drawText(1,1,"getGeneralSettings()	example",0)

		lcd.drawText(1,11,"battMin:	",	0)

		lcd.drawText(lcd.getLastPos()+2,11,settings['battMin'],0)

		lcd.drawText(1,21,"battMax:	",	0)

		lcd.drawText(lcd.getLastPos()+2,21,settings['battMax'],0)

		lcd.drawText(1,31,"imperial:	",	0)

		lcd.drawText(lcd.getLastPos()+2,31,settings['imperial'],0)

end

return{run=run}

getGeneralSettings()

58

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/general/getGeneralSettings-example.lua

getGeneralSettings()

59

getRAS()
Return	the	RAS	value	or	nil	if	no	valid	hardware	found

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	number		representing	RAS	value.	Value	bellow	0x33	(51	decimal)	are	all	ok,	value
above	0x33	indicate	a	hardware	antenna	issue.	This	is	just	a	hardware	pass/fail
measure	and	does	not	represent	the	quality	of	the	radio	link

Notice

RAS	was	called	SWR	in	the	past

getRAS()

60

getRSSI()
Get	RSSI	value	as	well	as	low	and	critical	RSSI	alarm	levels	(in	dB)

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	rssi		RSSI	value	(0	if	no	link)

	alarm_low		Configured	low	RSSI	alarm	level

	alarm_crit		Configured	critical	RSSI	alarm	level

getRSSI()

61

getTime()
Return	the	time	since	the	radio	was	started	in	multiple	of	10ms

The	timer	internally	uses	a	32-bit	counter	which	is	enough	for	30	years	so	overflows	will	not
happen.

@status	current	Introduced	in	2.0.0

Parameters

none

Return	value

	number		Number	of	10ms	ticks	since	the	radio	was	started	Example:	run	time:	12.54
seconds,	return	value:	1254

getTime()

62

getValue(source)
Returns	the	value	of	a	source.

The	list	of	fixed	sources:

OpenTX	Version Radio

2.0 all

2.1 X9D	and	X9D+,	X9E

2.2 X9D	and	X9D+,	X9E,	Horus

In	OpenTX	2.1.x	the	telemetry	sources	no	longer	have	a	predefined	name.	To	get	a
telemetry	value	simply	use	it's	sensor	name.	For	example:

Altitude	sensor	has	a	name	"Alt"
to	get	the	current	altitude	use	the	source	"Alt"
to	get	the	minimum	altitude	use	the	source	"Alt-",	to	get	the	maximum	use	"Alt+"

@status	current	Introduced	in	2.0.0,	changed	in	2.1.0,		Cels+		and		Cels-		added	in	2.1.9

Parameters

	source		can	be	an	identifier	(number)	(which	was	obtained	by	the	getFieldInfo())	or	a
name	(string)	of	the	source.

Return	value

	value		current	source	value	(number).	Zero	is	returned	for:

non-existing	sources
for	all	telemetry	source	when	the	telemetry	stream	is	not	received

	table		GPS	position	is	returned	in	a	table:

	lat		(number)	latitude,	positive	is	North
	lon		(number)	longitude,	positive	is	East
	pilot-lat		(number)	pilot	latitude,	positive	is	North
	pilot-lon		(number)	pilot	longitude,	positive	is	East

	table		GPS	date/time,	see	getDateTime()

	table		Cells	are	returned	in	a	table	(except	where	no	cells	were	detected	in	which	case
the	returned	value	is	0):

getValue(source)

63

http://downloads-20.open-tx.org/firmware/lua_fields.txt
http://downloads-21.open-tx.org/firmware/lua_fields_taranis.txt
http://downloads-21.open-tx.org/firmware/lua_fields_taranis_x9e.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x9d.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x9e.txt
http://downloads.open-tx.org/2.2/firmware/lua_fields_x12s.txt

table	has	one	item	for	each	detected	cell:
key	(number)	cell	number	(1	to	number	of	cells)
value	(number)	current	cell	voltage

Notice

Getting	a	value	by	its	numerical	identifier	is	faster	then	by	its	name.	While		Cels		sensor
returns	current	values	of	all	cells	in	a	table,	a		Cels+		or		Cels-		will	return	a	single	value	-
the	maximum	or	minimum	Cels	value.

Examples

general/getValue-example

local	function	run(e)

		--

		--	NOTE:	analog	values	(e.g.	sticks	and	sliders)	typically	range	from	-1024	to	+1024

		--							divide	by	10.24	to	scale	into	-100%	thru	+100%

		--							or	add	1024	and	divide	by	20.48	to	scale	into	0%	thru	100%

		--

		local	rsValue	=	getValue('rs')

		local	thrValue	=	getValue('thr')

		lcd.clear()

		lcd.drawText(1,	1,	"getvalue()	example",0)

		lcd.drawText(1,	11,	"rsValue:	",	0)

		lcd.drawText(lcd.getLastPos()	+	2,	11,	rsValue,	0)

		lcd.drawText(120,	11,	"percent:	",	0)

		lcd.drawNumber(lcd.getLastPos()	+	32,	11,	rsValue	/	10.24,	PREC2)

		lcd.drawText(1,	21,	"thrValue:	",	0)

		lcd.drawText(lcd.getLastPos()	+	2,	21,	thrValue,	0)

		lcd.drawText(120,	21,	"percent:	",	0)

		lcd.drawNumber(lcd.getLastPos()	+	32,	21,	(thrValue	+	1024)	/	20.48,	PREC2)

end

return{run=run}

getValue(source)

64

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/general/getValue-example.lua

getValue(source)

65

getVersion()
Return	OpenTX	version

@status	current	Introduced	in	2.0.0,	expanded	in	2.1.7

Example

This	example	also	runs	in	OpenTX	versions	where	the	function	returned	only	one	value:

local	function	run(event)

		local	ver,	radio,	maj,	minor,	rev	=	getVersion()

		print("version:	"..ver)

		if	radio	then	print	("radio:	"..radio)	end

		if	maj	then	print	("maj:	"..maj)	end

		if	minor	then	print	("minor:	"..minor)	end

		if	rev	then	print	("rev:	"..rev)	end

		return	1

end

return	{		run=run	}

Output	of	the	above	script	in	simulator:

version:	2.1.7

radio:	taranis-simu

maj:	2

minor:	1

rev:	7

Parameters

none

Return	value

	string		OpenTX	version	(ie	"2.1.5")

	multiple		(available	since	2.1.7)	returns	5	values:

(string)	OpenTX	version	(ie	"2.1.5")
(string)	radio	version:		x9e	,		x9d+		or		x9d	.	If	running	in	simulator	the	"-simu"	is
added

getVersion()

66

(number)	major	version	(ie	2	if	version	2.1.5)
(number)	minor	version	(ie	1	if	version	2.1.5)
(number)	revision	number	(ie	5	if	version	2.1.5)

getVersion()

67

killEvents(key)
Stops	key	state	machine.	See	Key	Events	for	the	detailed	description.

@status	current	Introduced	in	2.0.0

Parameters

	key		(number)	key	to	be	killed,	can	also	include	event	type	(only	the	key	part	is	used)

Return	value

none

killEvents(key)

68

loadScript(file	[,	mode],	[,env])
Load	a	Lua	script	file.	This	is	similar	to	Lua's	own	loadfile()	API	method,	but	it	uses	OpenTx's
optional	pre-compilation	feature	to	save	memory	and	time	during	load.

Return	values	are	same	as	from	Lua	API	loadfile()	method:	If	the	script	was	loaded	w/out
errors	then	the	loaded	script	(or	"chunk")	is	returned	as	a	function.	Otherwise,	returns	nil
plus	the	error	message.

@status	current	Introduced	in	2.2.0

Example

		fun,	err	=	loadScript("/SCRIPTS/FUNCTIONS/print.lua")

		if	(fun	~=	nil)	then

					fun("Hello	from	loadScript()")

		else

					print(err)

		end

Parameters

	file		(string)	Full	path	and	file	name	of	script.	The	file	extension	is	optional	and
ignored	(see		mode		param	to	control	which	extension	will	be	used).	However,	if	an
extension	is	specified,	it	should	be	".lua"	(or	".luac"),	otherwise	it	is	treated	as	part	of	the
file	name	and	the	.lua/.luac	will	be	appended	to	that.

	mode		(string)	(optional)	Controls	whether	to	force	loading	the	text	(.lua)	or	pre-compiled
binary	(.luac)	version	of	the	script.	By	default	OTx	will	load	the	newest	version	and
compile	a	new	binary	if	necessary	(overwriting	any	existing	.luac	version	of	the	same
script,	and	stripping	some	debug	info	like	line	numbers).	You	can	use		mode		to	control
the	loading	behavior	more	specifically.	Possible	values	are:

	b		only	binary.
	t		only	text.
	T		(default	on	simulator)	prefer	text	but	load	binary	if	that	is	the	only	version
available.
	bt		(default	on	radio)	either	binary	or	text,	whichever	is	newer	(binary	preferred
when	timestamps	are	equal).
Add		x		to	avoid	automatic	compilation	of	source	file	to	.luac	version.	Eg:	"tx",	"bx",
or	"btx".

loadScript(file	[,	mode],	[,env])

69

https://www.lua.org/manual/5.2/manual.html#pdf-loadfile

Add		c		to	force	compilation	of	source	file	to	.luac	version	(even	if	existing	version
is	newer	than	source	file).	Eg:	"tc"	or	"btc"	(forces	"t",	overrides	"x").
Add		d		to	keep	extra	debug	info	in	the	compiled	binary.	Eg:	"td",	"btd",	or	"tcd"	(no
effect	with	just	"b"	or	with	"x").

	env		(integer)	See	documentation	for	Lua	function	loadfile().

Return	value

	function		The	loaded	script,	or		nil		if	there	was	an	error	(e.g.	file	not	found	or	syntax
error).

	string		Error	message(s),	if	any.	Blank	if	no	error	occurred.

Notice

Note	that	you	will	get	an	error	if	you	specify		mode		as	"b"	or	"t"	and	that	specific	version	of
the	file	does	not	exist	(eg.	no	.luac	file	when	"b"	is	used).	Also	note	that		mode		is	NOT
passed	on	to	Lua's	loader	function,	so	unlike	with	loadfile()	the	actual	file	content	is	not
checked	(as	if	no	mode	or	"bt"	were	passed	to	loadfile()).

loadScript(file	[,	mode],	[,env])

70

playDuration(duration	[,	hourFormat])
Play	a	time	value	(text	to	speech)

@status	current	Introduced	in	2.1.0

Parameters

	duration		(number)	number	of	seconds	to	play.	Only	integral	part	is	used.

	hourFormat		(number):

	0	or	not	present		play	format:	minutes	and	seconds.
	!=	0		play	format:	hours,	minutes	and	seconds.

Return	value

none

Examples

The	one	time	script	below	will	announce	"zero	hours	1	minute	and	1	second"

local	function	run()

		playDuration(61,	1)	--	announce	"zero	hours	1	minute	and	1	second

		return	1

end

return	{	run=run	}

playDuration(duration	[,	hourFormat])

71

playFile(name)
Play	a	file	from	the	SD	card

@status	current	Introduced	in	2.0.0,	changed	in	2.1.0

Parameters

	path		(string)	full	path	to	wav	file	(i.e.	“/SOUNDS/en/system/tada.wav”)	Introduced	in
2.1.0:	If	you	use	a	relative	path,	the	current	language	is	appended	to	the	path	(example:
for	English	language:		/SOUNDS/en		is	appended)

Return	value

none

Examples

Example	telemetry	script

playFile(name)

72

local	eleid

local	function	init()

		local	fieldinfo	=	getFieldInfo('ele')

		if	fieldinfo	then	

				eleid	=	fieldinfo.id

		else

				eleid	=	-1

		end

end

local	function	run(e)

		lcd.clear()

		lcd.drawText(1,1,"playFile()	example",0)

		local	eleVal	=	getValue(eleid)

		if	eleVal	>	900	then	

				lcd.drawText(1,11,"Whoa	-	easy	there	cowboy",	0)

				playFile("horn.wav")

		else

				lcd.drawText(1,11,"eleVal:	"	..	eleVal,	0)				

		end

end

return	{init=init,	run=run}

playFile(name)

73

playHaptic(duration,	pause	[,	flags])
Generate	haptic	feedback

@status	current	Introduced	in	2.2.0

Parameters

	duration		(number)	length	of	the	haptic	feedback	in	milliseconds

	pause		(number)	length	of	the	silence	after	haptic	feedback	in	milliseconds

	flags		(number):

	0	or	not	present		play	with	normal	priority
	PLAY_NOW		play	immediately

Return	value

none

playHaptic(duration,	pause	[,	flags])

74

playNumber(value,	unit	[,	attributes])
Play	a	numerical	value	(text	to	speech)

@status	current	Introduced	in	2.0.0

Parameters

	value		(number)	number	to	play.	Value	is	interpreted	as	integer.

	unit		(number)	unit	identifier	Full	list

	attributes		(unsigned	number)	possible	values:

	0	or	not	present		plays	integral	part	of	the	number	(for	a	number	123	it	plays	123)
	PREC1		plays	a	number	with	one	decimal	place	(for	a	number	123	it	plays	12.3)
	PREC2		plays	a	number	with	two	decimal	places	(for	a	number	123	it	plays	1.23)

Return	value

none

Examples

Example	mix	script

local	nbr	=	0

local	unit	=	0

local	prec	=	0

local	lastnbr	=	0

local	lastunit	=	0

local	lastprec	=	0

local	lasttime	=	0

local	input	=

				{

								{	"innbr",	SOURCE},

								{	"inprec",	SOURCE},

								{	"toggle",	SOURCE}

				}

local	output	=	{"nbr",	"prec",	"unit"}

local	function	run(innbr,	inprec,	toggle)

playNumber(value,	unit	[,	attributes])

75

		local	change	=	false

		local	advance	=	false

		local	timenow	=	getTime()

		nbr	=	innbr	--	will	range	from	-	1024	thru	+	1024

		prec	=	math.floor((inprec	+	1024)	*	(2	/	2014))	--	force	range	to	0	thru	2

		if	(toggle	>	0)	then

				change	=	true

				advance	=	true

		end

		if	math.abs(lastnbr	-	nbr)	>	10	then

				change	=	true

		end

		if	not	(lastprec	==	prec)	then

				change	=	true

		end

		if	change	and	((timenow	-	lasttime)	>	200)	then

				lasttime	=	timenow

				lastnbr	=	nbr

				if	advance	then

						lastunit	=	(lastunit	+	1)	%	31

				end

				lastprec	=	prec

				if	(lastprec	==	0)	then

						playNumber(lastnbr,	lastunit,	0)

				elseif	(lastprec	==	1)	then

						playNumber(lastnbr,	lastunit,	PREC1)

				else

						playNumber(lastnbr,	lastunit,	PREC2)

				end

		end

		return	lastnbr	*	10.24,	lastprec	*	10.24,	lastunit	*	10.24

end

return	{run=run,	input=input,	output=output}

playNumber(value,	unit	[,	attributes])

76

playTone(frequency,	duration,	pause	[,	flags	[,
freqIncr]])
Play	a	tone

@status	current	Introduced	in	2.1.0

Parameters

	frequency		(number)	tone	frequency	in	Hz	(from	150	to	15000)

	duration		(number)	length	of	the	tone	in	milliseconds

	pause		(number)	length	of	the	silence	after	the	tone	in	milliseconds

	flags		(number):

	0	or	not	present		play	with	normal	priority.
	PLAY_BACKGROUND		play	in	background	(built	in	vario	function	uses	this	context)
	PLAY_NOW		play	immediately

	freqIncr		(number)	positive	number	increases	the	tone	pitch	(frequency	with	time),
negative	number	decreases	it.	The	frequency	changes	every	10	milliseconds,	the
change	is		freqIncr	*	10Hz	.	The	valid	range	is	from	-127	to	127.

Return	value

none

playTone(frequency,	duration,	pause	[,	flags	[,	freqIncr]])

77

popupConfirmation(title,	event)
Raises	a	pop-up	on	screen	that	asks	for	confirmation

@status	current	Introduced	in	2.2.0

Parameters

	title		(string)	text	to	display

	event		(number)	the	event	variable	that	is	passed	in	from	the	Run	function	(key
pressed)

Return	value

	"CANCEL"		user	pushed	EXIT	key

Notice

Use	only	from	stand-alone	and	telemetry	scripts.

popupConfirmation(title,	event)

78

popupInput(title,	event,	input,	min,	max)
Raises	a	pop-up	on	screen	that	allows	uses	input

@status	current	Introduced	in	2.0.0

Parameters

	title		(string)	text	to	display

	event		(number)	the	event	variable	that	is	passed	in	from	the	Run	function	(key
pressed)

	input		(number)	value	that	can	be	adjusted	by	the	+/​-	keys

	min		(number)	min	value	that	input	can	reach	(by	pressing	the	- ​	key)

	max		(number)	max	value	that	input	can	reach

Return	value

	number		result	of	the	input	adjustment

	"OK"		user	pushed	ENT	key

	"CANCEL"		user	pushed	EXIT	key

Notice

Use	only	from	stand-alone	and	telemetry	scripts.

popupInput(title,	event,	input,	min,	max)

79

popupWarning(title,	event)
Raises	a	pop-up	on	screen	that	shows	a	warning

@status	current	Introduced	in	2.2.0

Parameters

	title		(string)	text	to	display

	event		(number)	the	event	variable	that	is	passed	in	from	the	Run	function	(key
pressed)

Return	value

	"CANCEL"		user	pushed	EXIT	key

Notice

Use	only	from	stand-alone	and	telemetry	scripts.

popupWarning(title,	event)

80

setTelemetryValue(id,	subID,	instance,	value	[,
unit	[,	precision	[,	name]]])
@status	current	Introduced	in	2.2.0

Parameters

	id		Id	of	the	sensor,	valid	range	is	from	0	to	0xFFFF

	subID		subID	of	the	sensor,	usually	0,	valid	range	is	from	0	to	7

	instance		instance	of	the	sensor	(SensorID),	valid	range	is	from	0	to	0xFF

	value		fed	to	the	sensor

	unit		unit	of	the	sensor	Full	list

	precision		the	precision	of	the	sensor

	0	or	not	present		no	decimal	precision.
	!=	0		value	is	divided	by	10^precision,	e.g.	value=1000,	prec=2	=>	10.00.

	name		(string)	Name	of	the	sensor	if	it	does	not	yet	exist	(4	chars).

	not	present		Name	defaults	to	the	Id.
	present		Sensor	takes	name	of	the	argument.	Argument	must	have	name
surrounded	by	quotes:	e.g.,	"Name"

Return	value

	true,		if	the	sensor	was	just	added.	In	this	case	the	value	is	ignored	(subsequent	call
will	set	the	value)

Notice

All	three	parameters		id	,		subID		and		instance		can't	be	zero	at	the	same	time.	At	least
one	of	them	must	be	different	from	zero.

setTelemetryValue(id,	subID,	instance,	value	[,	unit	[,	precision	[,	name]]])

81

sportTelemetryPop()
Pops	a	received	SPORT	packet	from	the	queue.	Please	note	that	only	packets	using	a	data
ID	within	0x5000	to	0x52FF	(frame	ID	==	0x10),	as	well	as	packets	with	a	frame	ID	equal
0x32	(regardless	of	the	data	ID)	will	be	passed	to	the	LUA	telemetry	receive	queue.

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	nil		queue	does	not	contain	any	(or	enough)	bytes	to	form	a	whole	packet

	multiple		returns	4	values:

sensor	ID	(number)
frame	ID	(number)
data	ID	(number)
value	(number)

sportTelemetryPop()

82

sportTelemetryPush()
This	functions	allows	for	sending	SPORT	telemetry	data	toward	the	receiver,	and	more
generally,	to	anything	connected	SPORT	bus	on	the	receiver	or	transmitter.

When	called	without	parameters,	it	will	only	return	the	status	of	the	output	buffer	without
sending	anything.

@status	current	Introduced	in	2.2.0

Parameters

	sensorId		physical	sensor	ID

	frameId		frame	ID

	dataId		data	ID

	value		value

Return	value

	boolean		data	queued	in	output	buffer	or	not.

sportTelemetryPush()

83

Model	Functions

Model	Functions

84

model.defaultInputs()
Set	all	inputs	to	defaults

@status	current	Introduced	in	2.0.0

Parameters

none

Return	value

none

model.defaultInputs()

85

model.deleteInput(input,	line)
Delete	line	from	specified	input

@status	current	Introduced	in	2.0.0

Parameters

	input		(unsigned	number)	input	number	(use	0	for	Input1)

	line		(unsigned	number)	input	line	(use	0	for	first	line)

Return	value

none

model.deleteInput(input,	line)

86

model.deleteInputs()
Delete	all	Inputs

@status	current	Introduced	in	2.0.0

Parameters

none

Return	value

none

model.deleteInputs()

87

model.deleteMix(channel,	line)
Delete	mixer	line	from	specified	Channel

@status	current	Introduced	in	2.0.0

Parameters

	channel		(unsigned	number)	channel	number	(use	0	for	CH1)

	line		(unsigned	number)	mix	number	(use	0	for	first	line(mix))

Return	value

none

model.deleteMix(channel,	line)

88

model.deleteMixes()
Remove	all	mixers

@status	current	Introduced	in	2.0.0

Parameters

none

Return	value

none

model.deleteMixes()

89

model.getCurve(curve)
Get	Curve	parameters

Note	that	functions	returns	the	tables	starting	with	index	0	contrary	to	LUA's	usual	index
starting	with	1

@status	current	Introduced	in	2.0.12

Parameters

	curve		(unsigned	number)	curve	number	(use	0	for	Curve1)

Return	value

	nil		requested	curve	does	not	exist

	table		curve	data:

	name		(string)	name
	type		(number)	type
	smooth		(boolean)	smooth
	points		(number)	number	of	points
	y		(table)	table	of	Y	values:

	key		is	point	number	(zero	based)
	value		is	y	value

	x		(table)	only	included	for	custom	curve	type:
	key		is	point	number	(zero	based)
	value		is	x	value

model.getCurve(curve)

90

model.getCustomFunction(function)
Get	Custom	Function	parameters

@status	current	Introduced	in	2.0.0,	TODO	rename	function

Parameters

	function		(unsigned	number)	custom	function	number	(use	0	for	CF1)

Return	value

	nil		requested	custom	function	does	not	exist

	table		custom	function	data:

	switch		(number)	switch	index
	func		(number)	function	index
	name		(string)	Name	of	track	to	play	(only	returned	only	returned	if	action	is	play
track,	sound	or	script)
	value		(number)	value	(only	returned	only	returned	if	action	is	not	play	track,
sound	or	script)
	mode		(number)	mode	(only	returned	only	returned	if	action	is	not	play	track,	sound
or	script)
	param		(number)	parameter	(only	returned	only	returned	if	action	is	not	play	track,
sound	or	script)
	active		(number)	0	=	disabled,	1	=	enabled

model.getCustomFunction(function)

91

model.getGlobalVariable(index	[,	flight_mode])
Return	current	global	variable	value

Example:

		--	get	GV3	(index	=	2)	from	Flight	mode	0	(FM0)

		val	=	model.getGlobalVariable(2,	0)

Parameters

	index		zero	based	global	variable	index,	use	0	for	GV1,	8	for	GV9

	flight_mode		Flight	mode	number	(0	=	FM0,	8	=	FM8)

Return	value

	nil		requested	global	variable	does	not	exist

	number		current	value	of	global	variable

Notice

a	simple	warning	or	notice

model.getGlobalVariable(index	[,	flight_mode])

92

model.getInfo()
Get	current	Model	information

@status	current	Introduced	in	2.0.6,	changed	in	2.2.0

Parameters

none

Return	value

	table		model	information:
	name		(string)	model	name
	bitmap		(string)	bitmap	name	(not	present	on	X7)

model.getInfo()

93

model.getInput(input,	line)
Return	input	data	for	given	input	and	line	number

@status	current	Introduced	in	2.0.0,		switch		added	in	TODO

Parameters

	input		(unsigned	number)	input	number	(use	0	for	Input1)

	line		(unsigned	number)	input	line	(use	0	for	first	line)

Return	value

	nil		requested	input	or	line	does	not	exist

	table		input	data:

	name		(string)	input	line	name
	source		(number)	input	source	index
	weight		(number)	input	weight
	offset		(number)	input	offset
	switch		(number)	input	switch	index

model.getInput(input,	line)

94

model.getInputsCount(input)
Return	number	of	lines	for	given	input

@status	current	Introduced	in	2.0.0

Parameters

	input		(unsigned	number)	input	number	(use	0	for	Input1)

Return	value

	number		number	of	configured	lines	for	given	input

model.getInputsCount(input)

95

model.getLogicalSwitch(switch)
Get	Logical	Switch	parameters

@status	current	Introduced	in	2.0.0

Parameters

	switch		(unsigned	number)	logical	switch	number	(use	0	for	LS1)

Return	value

	nil		requested	logical	switch	does	not	exist

	table		logical	switch	data:

	func		(number)	function	index
	v1		(number)	V1	value	(index)
	v2		(number)	V2	value	(index	or	value)
	v3		(number)	V3	value	(index	or	value)
	and		(number)	AND	switch	index
	delay		(number)	delay	(time	in	1/10	s)
	duration		(number)	duration	(time	in	1/10	s)

model.getLogicalSwitch(switch)

96

model.getMix(channel,	line)
Get	configuration	for	specified	Mix

@status	current	Introduced	in	2.0.0,	parameters	below		multiplex		added	in	2.0.13

Parameters

	channel		(unsigned	number)	channel	number	(use	0	for	CH1)

	line		(unsigned	number)	mix	number	(use	0	for	first	line(mix))

Return	value

	nil		requested	channel	or	line	does	not	exist

	table		mix	data:

	name		(string)	mix	line	name
	source		(number)	source	index
	weight		(number)	weight	(1024	==	100%)	value	or	GVAR1..9	=	4096..4011,	-
GVAR1..9	=	4095..4087
	offset		(number)	offset	value	or	GVAR1..9	=	4096..4011,	-GVAR1..9	=	4095..4087
	switch		(number)	switch	index
	multiplex		(number)	multiplex	(0	=	ADD,	1	=	MULTIPLY,	2	=	REPLACE)
	curveType		(number)	curve	type	(function,	expo,	custom	curve)
	curveValue		(number)	curve	index
	flightModes		(number)	bit-mask	of	active	flight	modes
	carryTrim		(boolean)	carry	trim
	mixWarn		(number)	warning	(0	=	off,	1	=	1	beep,	..	3	=	3	beeps)
	delayUp		(number)	delay	up	(time	in	1/10	s)
	delayDown		(number)	delay	down
	speedUp		(number)	speed	up
	speedDown		(number)	speed	down

model.getMix(channel,	line)

97

model.getMixesCount(channel)
Get	the	number	of	Mixer	lines	that	the	specified	Channel	has

@status	current	Introduced	in	2.0.0

Parameters

	channel		(unsigned	number)	channel	number	(use	0	for	CH1)

Return	value

	number		number	of	mixes	for	requested	channel

model.getMixesCount(channel)

98

model.getModule(index)
Get	RF	module	parameters

	rfProtocol		values:

-1	OFF
0	D16
1	D8
2	LR12

@status	current	Introduced	in	TODO

Parameters

	index		(number)	module	index	(0	for	internal,	1	for	external)

Return	value

	nil		requested	module	does	not	exist

	table		module	parameters:

	rfProtocol		(number)	protocol	index
	modelId		(number)	receiver	number
	firstChannel		(number)	start	channel	(0	is	CH1)
	channelsCount		(number)	number	of	channels	sent	to	module

model.getModule(index)

99

model.getOutput(index)
Get	servo	parameters

@status	current	Introduced	in	2.0.0

Parameters

	index		(unsigned	number)	output	number	(use	0	for	CH1)

Return	value

	nil		requested	output	does	not	exist

	table		output	parameters:

	name		(string)	name
	min		(number)	Minimum	%	*	10
	max		(number)	Maximum	%	*	10
	offset		(number)	Subtrim	*	10
	ppmCenter		(number)	offset	from	PPM	Center.	0	=	1500
	symetrical		(number)	linear	Subtrim	0	=	Off,	1	=	On
	revert		(number)	irection	0	=	​​​---,	1	=	INV
	curve	

(number)	Curve	number	(0	for	Curve1)
or		nil		if	no	curve	set

model.getOutput(index)

100

model.getTimer(timer)
Get	model	timer	parameters

@status	current	Introduced	in	2.0.0

Parameters

	timer		(number)	timer	index	(0	for	Timer	1)

Return	value

	nil		requested	timer	does	not	exist

	table		timer	parameters:

	mode		(number)	timer	trigger	source:	off,	abs,	stk,	stk%,	sw/!sw,	!m_sw/!m_sw
	start		(number)	start	value	[seconds],	0	for	up	timer,	0>	down	timer
	value		(number)	current	value	[seconds]
	countdownBeep		(number)	countdown	beep	(0​	=	silent,	1	=​	beeps,	2​	=	voice)
	minuteBeep		(boolean)	minute	beep
	persistent		(number)	persistent	timer

model.getTimer(timer)

101

model.insertInput(input,	line,	value)
Insert	an	Input	at	specified	line

@status	current	Introduced	in	2.0.0,		switch		added	in	TODO

Parameters

	input		(unsigned	number)	input	number	(use	0	for	Input1)

	line		(unsigned	number)	input	line	(use	0	for	first	line)

	value		(table)	input	data,	see	model.getInput()

Return	value

none

model.insertInput(input,	line,	value)

102

model.insertMix(channel,	line,	value)
Insert	a	mixer	line	into	Channel

@status	current	Introduced	in	2.0.0,	parameters	below		multiplex		added	in	2.0.13

Parameters

	channel		(unsigned	number)	channel	number	(use	0	for	CH1)

	line		(unsigned	number)	mix	number	(use	0	for	first	line(mix))

	value		(table)	see	model.getMix()	for	table	format

Return	value

none

model.insertMix(channel,	line,	value)

103

model.resetTimer(timer)
Reset	model	timer	to	a	startup	value

@status	current	Introduced	in	TODO

Parameters

	timer		(number)	timer	index	(0	for	Timer	1)

Return	value

none

model.resetTimer(timer)

104

model.setCurve(curve,	params)
Set	Curve	parameters

The	first	and	last	x	value	must	0	and	100	and	x	values	must	be	monotonically	increasing

@status	current	Introduced	in	2.2.0

Example	setting	a	4-point	custom	curve:

		params	=	{}

		params["x"]	=		{0,	34,	77,	100}

		params["y"]	=	{-70,	20,	-89,	-100}

		params["smooth"]	=	1

		params["type"]	=	1

		val	=		model.setCurve(2,	params)

setting	a	6-point	standard	smoothed	curve

	val	=	model.setCurve(3,	{smooth=1,	y={-100,	-50,	0,	50,	100,	80}})

Parameters

	curve		(unsigned	number)	curve	number	(use	0	for	Curve1)

	params		see	model.getCurve	return	format	for	table	format.	setCurve	uses	standard	lua
array	indexing	and	array	start	at	index	1

Return	value

``	0	-	Everything	okay

			1	-	Wrong	number	of	points

			2	-	Invalid	Curve	number

			3	-	Cuve	does	not	fit	anymore

			4	-	point	of	out	of	index

			5	-	x	value	not	monotonically	increasing

			6	-	y	value	not	in	range	[-100;100]

			7	-	extra	values	for	y	are	set

			8	-	extra	values	for	x	are	set

model.setCurve(curve,	params)

105

model.setCurve(curve,	params)

106

model.setCustomFunction(function,	value)
Set	Custom	Function	parameters

@status	current	Introduced	in	2.0.0,	TODO	rename	function

Parameters

	function		(unsigned	number)	custom	function	number	(use	0	for	CF1)

	value		(table)	custom	function	parameters,	see	model.getCustomFunction()	for	table
format

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

model.setCustomFunction(function,	value)

107

model.setGlobalVariable(index,	flight_mode,
value)
Sets	current	global	variable	value.	See	also	model.getGlobalVariable()

Parameters

	index		zero	based	global	variable	index,	use	0	for	GV1,	8	for	GV9

	flight_mode		Flight	mode	number	(0	=	FM0,	8	=	FM8)

	value		new	value	for	global	variable.	Permitted	range	is	from	-1024	to	1024.

Return	value

none

Notice

Global	variable	can	only	store	integer	values,	any	floating	point	value	is	converted	into
integer	value	by	truncating	everything	behind	a	floating	point.

Examples

Example

this	is	a	sample	example

model/setGlobalVariable-example

function	foo(bar)

		local	x	=	bar	*	2

end

model.setGlobalVariable(index,	flight_mode,	value)

108

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/model/setGlobalVariable-example.lua

model.setGlobalVariable(index,	flight_mode,	value)

109

model.setInfo(value)
Set	the	current	Model	information

@status	current	Introduced	in	2.0.6,	changed	in	TODO

Parameters

	value		model	information	data,	see	model.getInfo()

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

model.setInfo(value)

110

model.setLogicalSwitch(switch,	value)
Set	Logical	Switch	parameters

@status	current	Introduced	in	2.0.0

Parameters

	switch		(unsigned	number)	logical	switch	number	(use	0	for	LS1)

	value		(table)	see	model.getLogicalSwitch()	for	table	format

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

To	set	the		and		member	(which	is	Lua	keyword)	use	the	following	syntax:
	model.setLogicalSwitch(30,	{func=4,v1=1,v2=-99,	["and"]=24})	

model.setLogicalSwitch(switch,	value)

111

model.setModule(index,	value)
Set	RF	module	parameters

@status	current	Introduced	in	TODO

Parameters

	index		(number)	module	index	(0	for	internal,	1	for	external)

	value		module	parameters,	see	model.getModule()

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

model.setModule(index,	value)

112

model.setOutput(index,	value)
Set	servo	parameters

@status	current	Introduced	in	2.0.0

Parameters

	index		(unsigned	number)	channel	number	(use	0	for	CH1)

	value		(table)	servo	parameters,	see	model.getOutput()	for	table	format

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

model.setOutput(index,	value)

113

model.setTimer(timer,	value)
Set	model	timer	parameters

@status	current	Introduced	in	2.0.0

Parameters

	timer		(number)	timer	index	(0	for	Timer	1)

	value		timer	parameters,	see	model.getTimer()

Return	value

none

Notice

If	a	parameter	is	missing	from	the	value,	then	that	parameter	remains	unchanged.

model.setTimer(timer,	value)

114

Lcd	Functions

Lcd	Functions

115

Lcd	Functions	Overview
Description

Lcd	functions	allow	scripts	to	interact	with	the	transmitter	display.	This	access	is	limited	to
the	'run'	functions	of	One-Time	and	Telemetry	scripts.	Widget	scripts	on	the	Horus	(X10	and
X12S)	can	make	use	of	the	lcd	functions	as	well.

Notes:

The	run	function	is	periodically	called	when	the	screen	is	visible.	In	OpenTX	2.0	each
invocation	starts	with	a	blank	screen	(unless	lcd.lock()	is	used).	Under	OpenTX	2.1	screen
state	is	always	persisted	across	calls	to	the	run	function.	Many	scripts	originally	written
for	OpenTX	2.0	require	a	call	to	lcd.clear()	at	the	beginning	of	their	run	function	in
order	to	display	properly	under	2.1	and	2.2.

Many	of	the	lcd	functions	accept	parameters	named	flags	and	patterns.	The	names	and	their
meanings	are	described	below.

Flags	Constants

Lcd	Functions	Overview

116

Name Description Version Notes

0 normal	font,	default
precision	for	numeric

DBLSIZE double	size	font

MIDSIZE mid	sized	font

SMLSIZE small	font

INVERS inverted	display

BLINK blinking	text

XXLSIZE jumbo	font 2.0.6

LEFT left	justify 2.0.6 Default	for	most	functions
not	related	to	bitmaps

RIGHT right	justify

PREC1 single	decimal	place

PREC2 two	decimal	places

GREY_DEFAULT grey	fill

TIMEHOUR dislay	hours Only	for	drawTimer

Patterns	Constants

Name Description

FORCE pixels	will	be	black

ERASE pixels	will	be	white

DOTTED lines	will	appear	dotted

Screen	Constants

Name Description

LCD_W width	in	pixels

LCD_H height	in	pixels

Screen	Information

Lcd	Functions	Overview

117

Radio LCD_W LCD_H Colours

X7 128 64 1	bit

X9D 212 64 4	bit

X9D+ 212 64 4	bit

X9E 212 64 4	bit

X10 480 272 RGB565

X12S 480 272 RGB565

Lcd	Functions	Overview

118

lcd.RGB(r,	g,	b)
Returns	a	5/6/5	rgb	color	code,	that	can	be	used	with	lcd.setColor

@status	current	Introduced	in	2.2.0

Parameters

	r		(integer)	a	number	between	0x00	and	0xff	that	expresses	te	amount	of	red	in	the
color

	g		(integer)	a	number	between	0x00	and	0xff	that	expresses	te	amount	of	green	in	the
color

	b		(integer)	a	number	between	0x00	and	0xff	that	expresses	te	amount	of	blue	in	the
color

Return	value

	number		(integer)	rgb	color	expressed	in	5/6/5	format

Notice

Only	available	on	Horus

lcd.RGB(r,	g,	b)

119

lcd.clear([color])
Clear	the	LCD	screen

@status	current	Introduced	in	2.0.0,		color		parameter	introduced	in	2.2.0	RC12

Parameters

	color		(optional,	only	on	color	screens)

Return	value

none

Notice

This	function	only	works	in	stand-alone	and	telemetry	scripts.

Examples

lcd/clear-example

lcd.clear([color])

120

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/clear-example.lua

--

--

--	This	example	demonstrates	the	lcd.clear()	function

--

--	NOTE:	Compare	the	output	of	the	images	below

--							lcd.clear()	is	NOT	CALLED	automatically	in	OpenTX	2.1

--

local	startTicks

local	nowTicks

local	function	init()

		startTicks	=	getTime()	/	100.0

end

local	function	background()

		nowTicks	=	getTime()	/	100.0

end

local	function	run(e)

		background()

		local	interval	=	10	-	math.floor(nowTicks	%	10)

		lcd.drawText(1,	1,	"clear()	example",0)

		lcd.drawText((10	*	interval)	+	1,	10	,	interval,	0)

		if	interval	==	10	then

				lcd.clear()

		end

end

return{run=run,	background=background}

clear-example.lua	running	under	OpenTX	2.1

clear-example.lua	running	under	OpenTX	2.0

lcd.clear([color])

121

lcd.clear([color])

122

lcd.drawBitmap(bitmap,	x,	y	[,	scale])
Displays	a	bitmap	at	(x,y)

@status	current	Introduced	in	2.2.0

Parameters

	bitmap		(pointer)	point	to	a	bitmap	previously	opened	with	Bitmap.open()

	x,y		(positive	numbers)	starting	coordinates

	scale		(positive	numbers)	scale	in	%,	50	divides	size	by	two,	100	is	unchanged,	200
doubles	size.	Omitting	scale	draws	image	in	1:1	scale	and	is	faster	than	specifying	100
for	scale.

Return	value

none

Notice

Only	available	on	Horus

lcd.drawBitmap(bitmap,	x,	y	[,	scale])

123

lcd.drawChannel(x,	y,	source,	flags)
Display	a	telemetry	value	at	(x,y)

@status	current	Introduced	in	2.0.6,	changed	in	2.1.0	(only	telemetry	sources	are	valid)

Parameters

	x,y		(positive	numbers)	starting	coordinate

	source		can	be	a	source	identifier	(number)	or	a	source	name	(string).	See	getValue()

	flags		(unsigned	number)	drawing	flags

Return	value

none

Examples

lcd/drawChannel-example

local	function	run(e)

		lcd.clear()

		lcd.drawText(1,	1,	"drawChannel('Alt')	example",0)

		lcd.drawText(1,	16,	"using	drawChannel():	",	0)

		lcd.drawChannel(lcd.getLastPos()+20,	16	,	"Alt",	0)

		lcd.drawText(1,	31,	"using	getValue():	",	0)

		lcd.drawText(lcd.getLastPos()	+	22,	31,	getValue("Alt"),	0)

end

return{run=run}

lcd.drawChannel(x,	y,	source,	flags)

124

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawChannel-example.lua

lcd.drawChannel(x,	y,	source,	flags)

125

lcd.drawCombobox(x,	y,	w,	list,	idx	[,	flags])
Draw	a	combo	box

@status	current	Introduced	in	2.0.0

Parameters

	x,y		(positive	numbers)	top	left	corner	position

	w		(number)	width	of	combo	box	in	pixels

	list		(table)	combo	box	elements,	each	element	is	a	string

	idx		(integer)	index	of	entry	to	highlight

	flags		(unsigned	number)	drawing	flags,	the	flags	can	not	be	combined:

	BLINK		combo	box	is	expanded
	INVERS		combo	box	collapsed,	text	inversed
	0	or	not	present		combo	box	collapsed,	text	normal

Return	value

none

Notice

Only	available	on	Taranis

Examples

lcd/drawCombobox-example

local	comboOptions

local	selectedOption

local	selectedSize

local	editMode

local	activeField

local	fieldMax

local	function	valueIncDec(event,value,min,max,step)

				if	editMode	then

						if	event==EVT_PLUS_FIRST	or	event==EVT_PLUS_REPT	then

lcd.drawCombobox(x,	y,	w,	list,	idx	[,	flags])

126

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawCombobox-example.lua

								if	value<=max-step	then

										value=value+step

								end

						elseif	event==EVT_MINUS_FIRST	or	event==EVT_MINUS_REPT	then

								if	value>=min+step	then

										value=value-step

								end

						end

				end

				return	value

		end

local	function	fieldIncDec(event,value,max,force)

				if	editMode	or	force==true	then

						if	event==EVT_PLUS_FIRST	then

								value=value+max

						elseif	event==EVT_MINUS_FIRST	then

								value=value+max+2

						end

						value=value%(max+1)

				end

				return	value

		end

		local	function	getFieldFlags(p)

				local	flg	=	0

				if	activeField==p	then

						flg=INVERS

						if	editMode	then

								flg=INVERS+BLINK

						end

				end

				return	flg

		end

local	function	init()

		fieldMax	=	1

		comboOptions	=	{"Triangle","Circle","Square"}

		selectedOption	=	0

		activeField	=	0

		selectedSize	=	0

end

local	function	run(event)

		lcd.clear()

		--	draw	from	the	bottom	up	so	we	don't	overwrite	the	combo	box	if	open

		lcd.drawText(19,	32,	"Pick	a	size:",	0)

		lcd.drawText(lcd.getLastPos()	+	2,	32,	selectedSize,	getFieldFlags(1))

		lcd.drawText(1,	1,	"drawComboBox()	telemetry	example",0)

		lcd.drawText(1,	17,	"Pick	an	option:",	0)

		lcd.drawCombobox(lcd.getLastPos()	+	2,	15,	70,	comboOptions,	selectedOption,	getFiel

dFlags(0))

lcd.drawCombobox(x,	y,	w,	list,	idx	[,	flags])

127

		if	event	==	EVT_ENTER_BREAK	then

				editMode	=	not	editMode

		end

		if	editMode	then

				if	activeField	==	0	then

						selectedOption	=	fieldIncDec(event,	selectedOption,	2)

				elseif	activeField	==	1	then

						selectedSize	=	valueIncDec(event,	selectedSize,	0,	10,	1)

				end

		else

				activeField	=	fieldIncDec(event,	activeField,	fieldMax,	true)

		end

end

return{run=run,	init=init}

lcd.drawCombobox(x,	y,	w,	list,	idx	[,	flags])

128

lcd.drawFilledRectangle(x,	y,	w,	h	[,	flags])
Draw	a	solid	rectangle	from	top	left	corner	(x,y)	of	specified	width	and	height

@status	current	Introduced	in	2.0.0

Parameters

	x,y		(positive	numbers)	top	left	corner	position

	w		(number)	width	in	pixels

	h		(number)	height	in	pixels

	flags		(unsigned	number)	drawing	flags

Return	value

none

Examples

lcd/drawFilledRectangle-example

local	function	run()

		lcd.clear()

		lcd.drawText(10,22,"drawFilledRectangle()",DBLSIZE)

		lcd.drawFilledRectangle(5,	5,	103,	50,	GREY_DEFAULT)

		lcd.drawFilledRectangle(152,	33,	50,	25,	SOLID)

end

return{run=run}

lcd.drawFilledRectangle(x,	y,	w,	h	[,	flags])

129

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawFilledRectangle-example.lua

lcd.drawFilledRectangle(x,	y,	w,	h	[,	flags])

130

lcd.drawGauge(x,	y,	w,	h,	fill,	maxfill	[,	flags])
Draw	a	simple	gauge	that	is	filled	based	upon	fill	value

@status	current	Introduced	in	2.0.0,	changed	in	2.2.0

Parameters

	x,y		(positive	numbers)	top	left	corner	position

	w		(number)	width	in	pixels

	h		(number)	height	in	pixels

	fill		(number)	amount	of	fill	to	apply

	maxfill		(number)	total	value	of	fill

	flags		(unsigned	number)	drawing	flags

Return	value

none

Examples

lcd/drawGauge-example

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,1,"drawGauge()	example",	0)

		lcd.drawGauge(1,	11,	120,	25,	250,	1000)

end

return{run=run}

lcd.drawGauge(x,	y,	w,	h,	fill,	maxfill	[,	flags])

131

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawGauge-example.lua

lcd.drawGauge(x,	y,	w,	h,	fill,	maxfill	[,	flags])

132

lcd.drawLine(x1,	y1,	x2,	y2,	pattern,	flags)
Draw	a	straight	line	on	LCD

@status	current	Introduced	in	2.0.0

Parameters

	x1,y1		(positive	numbers)	starting	coordinate

	x2,y2		(positive	numbers)	end	coordinate

	pattern		TODO

	flags		TODO

Return	value

none

Notice

If	the	start	or	the	end	of	the	line	is	outside	the	LCD	dimensions,	then	the	whole	line	will	not
be	drawn	(starting	from	OpenTX	2.1.5)

Examples

lcd/drawLine-example

lcd.drawLine(x1,	y1,	x2,	y2,	pattern,	flags)

133

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawLine-example.lua

local	alpha	=	(2	*	math.pi)	/	10

local	function	getPoint(centerX,	centerY,	radius,	point)

		local	omega	=	alpha	*	point

		local	r	=	radius*(point	%	2	+	1)/2

		local	X	=	(r	*	math.sin(omega))	+	centerX

		local	Y	=	(r	*	math.cos(omega))	+	centerY

		return	X,	Y

end

local	function	drawStar(centerX,	centerY,	radius,	pattern,	flags)

		local	point	=	10

		local	startX,	startY	=	getPoint(centerX,	centerY,	radius,	point)

		for	point	=	1,	10	do

				local	nextX,	nextY	=	getPoint(centerX,	centerY,	radius,	point)

				lcd.drawLine(startX,	startY,	nextX,	nextY,	pattern,	flags)

				startX	=	nextX

				startY	=	nextY

		end

end

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,1,"drawLine()	example",	0)

		drawStar(30,	35,	25,	SOLID,	FORCE)

		drawStar(30,	35,	20,	DOTTED,	FORCE)

		drawStar(30,	35,	15,	SOLID,	FORCE)

end

return{run=run}

lcd.drawLine(x1,	y1,	x2,	y2,	pattern,	flags)

134

lcd.drawNumber(x,	y,	value	[,	flags])
Display	a	number	at	(x,y)

@status	current	Introduced	in	2.0.0,		SHADOWED		introduced	in	2.2.1

Parameters

	x,y		(positive	numbers)	starting	coordinate

	value		(number)	value	to	display

	flags		(unsigned	number)	drawing	flags:

	0	or	not	specified		display	with	no	decimal	(like	abs())
	PREC1		display	with	one	decimal	place	(number	386	is	displayed	as	38.6)
	PREC2		display	with	tow	decimal	places	(number	386	is	displayed	as	3.86)
other	general	LCD	flag	also	apply
	SHADOWED		Horus	only,	apply	a	shadow	effect

Return	value

none

Examples

lcd/drawNumber-example

lcd.drawNumber(x,	y,	value	[,	flags])

135

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawNumber-example.lua

function	round(num,	decimals)

		local	mult	=	10^(decimals	or	0)

		return	math.floor(num	*	mult	+	0.5)	/	mult

end

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,1,"drawNumber()	example",	0)

		local	myNumber	=	123.456789

		lcd.drawNumber(75,	11,	myNumber,	0)

		lcd.drawNumber(75,	21,	myNumber,	PREC1)

		lcd.drawNumber(75,	31,	myNumber,	PREC2)

		lcd.drawText(1,	41,	"Compare	to	drawText:	"	..	myNumber,	0)

		lcd.drawText(1,	51,	"Or	custom	rounding:	"	..	round(myNumber,	4),	0)

end

return{run=run}

lcd.drawNumber(x,	y,	value	[,	flags])

136

lcd.drawPixmap(x,	y,	name)
Draw	a	bitmap	at	(x,y)

@status	current	Introduced	in	2.0.0

Parameters

	x,y		(positive	numbers)	starting	coordinates

	name		(string)	full	path	to	the	bitmap	on	SD	card	(i.e.	“/IMAGES/test.bmp”)

Return	value

none

Notice

Only	available	on	Taranis	X9	series.	Maximum	image	size	if	106	x	64	pixels	(width	x	height).

Examples

lcd/drawPixmap-example

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,1,"drawPixmap()	example",	0)

		lcd.drawPixmap(96,	0,	"/bmp/lua.bmp")

end

return{run=run}

lcd.drawPixmap(x,	y,	name)

137

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawPixmap-example.lua

lcd.drawPixmap(x,	y,	name)

138

lcd.drawPoint(x,	y)
Draw	a	single	pixel	at	(x,y)	position

@status	current	Introduced	in	2.0.0

Parameters

	x		(positive	number)	x	position

	y		(positive	number)	y	position

Return	value

none

Notice

Taranis	has	an	LCD	display	width	of	212	pixels	and	height	of	64	pixels.	Position	(0,0)	is	at
top	left.	Y	axis	is	negative,	top	line	is	0,	bottom	line	is	63.	Drawing	on	an	existing	black	pixel
produces	white	pixel	(TODO	check	this!)

Examples

lcd/drawPoint-example

lcd.drawPoint(x,	y)

139

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawPoint-example.lua

local	function	circle(xCenter,	yCenter,	radius)

		local	y,	x

		for	y=-radius,	radius	do

				for	x=-radius,	radius	do

								if(x*x+y*y	<=	radius*radius)	then

												lcd.drawPoint(xCenter+x,	yCenter+y)

								end

				end

		end

end

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,1,"drawPoint()	example",	0)

		circle(50,	25,	10)

		circle(65,	25,	10)

end

return{run=run}

lcd.drawPoint(x,	y)

140

lcd.drawRectangle(x,	y,	w,	h	[,	flags	[,	t]])
Draw	a	rectangle	from	top	left	corner	(x,y)	of	specified	width	and	height

@status	current	Introduced	in	2.0.0,	changed	in	2.2.0

Parameters

	x,y		(positive	numbers)	top	left	corner	position

	w		(number)	width	in	pixels

	h		(number)	height	in	pixels

	flags		(unsigned	number)	drawing	flags

	t		(number)	thickness	in	pixels,	defaults	to	1	(only	on	Horus)

Return	value

none

Examples

lcd/drawRectangle-example

local	function	run()

lcd.clear()

lcd.drawText(10,22,"drawRectangle()",DBLSIZE)

lcd.drawRectangle(5,	5,	150,	50,	SOLID)

lcd.drawRectangle(6,	6,	150,	50,	GREY_DEFAULT)

lcd.drawRectangle(7,	7,	150,	50,	SOLID)

lcd.drawRectangle(8,	8,	150,	50,	GREY_DEFAULT)

end

return{run=run}

lcd.drawRectangle(x,	y,	w,	h	[,	flags	[,	t]])

141

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawRectangle-example.lua

lcd.drawRectangle(x,	y,	w,	h	[,	flags	[,	t]])

142

lcd.drawScreenTitle(title,	page,	pages)
Draw	a	title	bar

@status	current	Introduced	in	2.0.0

Parameters

	title		(string)	text	for	the	title

	page		(number)	page	number

	pages		(number)	total	number	of	pages.	Only	used	as	indicator	on	the	right	side	of	title
bar.	(i.e.	idx=2,	cnt=5,	display		2/5)

Return	value

none

Notice

Only	available	on	Taranis

Examples

lcd/drawScreenTitle-example

local	function	run(event)

		lcd.clear()

		lcd.drawText(20,	20,"drawScreenTitle",	DBLSIZE	+	BLINK)

		lcd.drawScreenTitle("This	screen	has	one	page",	1,	1)

end

return{run=run}

lcd.drawScreenTitle(title,	page,	pages)

143

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawScreenTitle-example.lua

lcd.drawScreenTitle(title,	page,	pages)

144

lcd.drawSource(x,	y,	source	[,	flags])
Displays	the	name	of	the	corresponding	input	as	defined	by	the	source	at	(x,y)

@status	current	Introduced	in	2.0.0

Parameters

	x,y		(positive	numbers)	starting	coordinate

	source		(number)	source	index

	flags		(unsigned	number)	drawing	flags

Return	value

none

Examples

lcd/drawSource-example

local	function	run(event)

		local	source

		lcd.clear()

		lcd.drawText(1,	1,"drawSource()	example",	0)

		for	source	=	1,	5	do

			lcd.drawSource(1,	source	*	10,	source,	0)

			lcd.drawText(lcd.getLastPos(),	source	*	10,	"	is	input	source	number	"	..	source)

		end

end

return{run=run}

lcd.drawSource(x,	y,	source	[,	flags])

145

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawSource-example.lua

lcd.drawSource(x,	y,	source	[,	flags])

146

lcd.drawSwitch(x,	y,	switch,	flags)
Draw	a	text	representation	of	switch	at	(x,y)

@status	current	Introduced	in	2.0.0

Parameters

	x,y		(positive	numbers)	starting	coordinate

	switch		(number)	number	of	switch	to	display,	negative	number	displays	negated
switch

	flags		(unsigned	number)	drawing	flags,	only	SMLSIZE,	BLINK	and	INVERS.

Return	value

none

Examples

lcd/drawSwitch-example

local	function	run(event)

		local	source

		lcd.clear()

		lcd.drawText(1,	1,"drawSwitch()	example",	0)

		for	source	=	1,	5	do

			lcd.drawSwitch(1,	source	*	10,	source,	0)

			lcd.drawText(20,	source	*	10,	"	is	switch	source	number	"	..	source)

		end

end

return{run=run}

lcd.drawSwitch(x,	y,	switch,	flags)

147

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawSwitch-example.lua

lcd.drawSwitch(x,	y,	switch,	flags)

148

lcd.drawText(x,	y,	text	[,	flags])
Draw	a	text	beginning	at	(x,y)

@status	current	Introduced	in	2.0.0,		SHADOWED		introduced	in	2.2.1

Parameters

	x,y		(positive	numbers)	starting	coordinate

	text		(string)	text	to	display

	flags		(unsigned	number)	drawing	flags.	All	values	can	be	combined	together	using
the	+	character.	ie	BLINK	+	DBLSIZE.	See	the	Appendix	for	available	characters	in
each	font	set.

	0	or	not	specified		normal	font
	XXLSIZE		jumbo	sized	font
	DBLSIZE		double	size	font
	MIDSIZE		mid	sized	font
	SMLSIZE		small	font
	INVERS		inverted	display
	BLINK		blinking	text
	SHADOWED		Horus	only,	apply	a	shadow	effect

Return	value

none

Examples

lcd/drawText-example

lcd.drawText(x,	y,	text	[,	flags])

149

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawText-example.lua

local	function	run(event)

		lcd.clear()

		lcd.drawText(1,	1,"drawText()	example",	0)

		lcd.drawText(1,	11,"0	-	default",	0)

		lcd.drawText(1,	21,"BLINK",	BLINK)

		lcd.drawText(1,	31,"INVERS	+	BLINK",	INVERS	+	BLINK)

		lcd.drawText(120,	1,"XXLSIZE",	DBLSIZE)

		lcd.drawText(120,	21,"MIDSIZE",	MIDSIZE)

		lcd.drawText(120,	36,"SMLSIZE",	SMLSIZE)

end

return{run=run}

lcd.drawText(x,	y,	text	[,	flags])

150

lcd.drawTimer(x,	y,	value	[,	flags])
Display	a	value	formatted	as	time	at	(x,y)

@status	current	Introduced	in	2.0.0,		SHADOWED		introduced	in	2.2.1

Parameters

	x,y		(positive	numbers)	starting	coordinate

	value		(number)	time	in	seconds

	flags		(unsigned	number)	drawing	flags:

	0	or	not	specified		normal	representation	(minutes	and	seconds)
	TIMEHOUR		display	hours
other	general	LCD	flag	also	apply
	SHADOWED		Horus	only,	apply	a	shadow	effect

Return	value

none

Examples

lcd/drawTimer-example

local	upTime

local	function	background()

		upTime	=	getTime()	/	100

end

local	function	run(event)

		background()

		lcd.clear()

		lcd.drawText(1,	1,"drawTimer()	example",	0)

		lcd.drawTimer(1,	10,	upTime,	TIMEHOUR)

end

return{run=run}

lcd.drawTimer(x,	y,	value	[,	flags])

151

https://raw.githubusercontent.com/opentx/lua-reference-guide/opentx_2.2/lcd/drawTimer-example.lua

lcd.drawTimer(x,	y,	value	[,	flags])

152

lcd.getLastLeftPos()
Returns	the	leftmost	x	position	from	previous	drawtext	or	drawNumber	output

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	number		(integer)	x	position

Notice

Only	available	on	Taranis

lcd.getLastLeftPos()

153

lcd.getLastPos()
Returns	the	rightmost	x	position	from	previous	output

@status	current	Introduced	in	2.0.0

Parameters

none

Return	value

	number		(integer)	x	position

Notice

Only	available	on	Taranis

For	added	clarity,	it	is	recommended	to	use	lcd.getLastRightPos()

lcd.getLastPos()

154

lcd.getLastRightPos()
Returns	the	rightest	x	position	from	previous	drawtext	or	drawNumber	output

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

	number		(integer)	x	position

Notice

Only	available	on	Taranis

This	is	strictly	equivalent	to	former	lcd.getLastPos()

lcd.getLastRightPos()

155

lcd.refresh()
Refresh	the	LCD	screen

@status	current	Introduced	in	2.2.0

Parameters

none

Return	value

none

Notice

This	function	only	works	in	stand-alone	and	telemetry	scripts.

lcd.refresh()

156

lcd.setColor(area,	color)
Set	a	color	for	specific	area

@status	current	Introduced	in	2.2.0

Parameters

	area		(unsigned	number)	specific	screen	area	in	the	list	bellow

	CUSTOM_COLOR	

	TEXT_COLOR	

	TEXT_BGCOLOR	

	TEXT_INVERTED_COLOR	

	TEXT_INVERTED_BGCOLOR	

	LINE_COLOR	

	SCROLLBOX_COLOR	

	MENU_TITLE_BGCOLOR	

	MENU_TITLE_COLOR	

	MENU_TITLE_DISABLE_COLOR	

	HEADER_COLOR	

	ALARM_COLOR	

	WARNING_COLOR	

	TEXT_DISABLE_COLOR	

	HEADER_COLOR	

	CURVE_AXIS_COLOR	

	CURVE_CURSOR_COLOR	

	TITLE_BGCOLOR	

	TRIM_BGCOLOR	

	TRIM_SHADOW_COLOR	

	MAINVIEW_PANES_COLOR	

	MAINVIEW_GRAPHICS_COLOR	

	HEADER_BGCOLOR	

	HEADER_ICON_BGCOLOR	

	HEADER_CURRENT_BGCOLOR	

	OVERLAY_COLOR	

	color		(number)	color	in	5/6/5	rgb	format.	The	following	prefined	colors	are	available

	WHITE	

	GREY	

lcd.setColor(area,	color)

157

	LIGHTGREY	

	DARKGREY	

	BLACK	

	YELLOW	

	BLUE	

	RED	

	DARKRED	

Return	value

none

Notice

Only	available	on	Horus

lcd.setColor(area,	color)

158

Bitmap	Functions

Bitmap	Functions

159

Bitmap.getSize(name)
Return	width,	height	of	a	bitmap	object

@status	current	Introduced	in	2.2.0

Parameters

	bitmap		(pointer)	point	to	a	bitmap	previously	opened	with	Bitmap.open()

Return	value

	multiple		returns	2	values:
(number)	width	in	pixels
(number)	height	in	pixels

Notice

Only	available	on	Horus

Bitmap.getSize(name)

160

Bitmap.open(name)
Loads	a	bitmap	in	memory,	for	later	use	with	lcd.drawBitmap().	Bitmaps	should	be	loaded
only	once,	returned	object	should	be	stored	and	used	for	drawing.	If	loading	fails	for
whatever	reason	the	resulting	bitmap	object	will	have	width	and	height	set	to	zero.

Bitmap	loading	can	fail	if:

File	is	not	found	or	contains	invalid	image
System	is	low	on	memory
Combined	memory	usage	of	all	Lua	script	bitmaps	exceeds	certain	value

@status	current	Introduced	in	2.2.0

Parameters

	name		(string)	full	path	to	the	bitmap	on	SD	card	(i.e.	“/IMAGES/test.bmp”)

Return	value

	bitmap		(object)	a	bitmap	object	that	can	be	used	with	other	bitmap	functions

Notice

Only	available	on	Horus

Bitmap.open(name)

161

Part	IV	-	Converting	OpenTX	2.0	Scripts
The	handling	of	telemetry	data	is	significantly	improved	in	OpenTX	2.1.	However,	in	order	to
support	the	additional	flexibility	of	having	multiple	sensors	of	the	same	type,	many	Lua
scripts	referencing	GPS	and	Lipo	sensor	data	will	require	revision.

This	section	also	covers	some	of	the	requirements	for	scripts	that	are	necessary	for	them	to
function	properly	under	both	OpenTX	2.1	and	OpenTX	2.0.

Part	IV	-	Converting	OpenTX	2.0	Scripts

162

General	Issues	in	converting	scripts	written	for	OpenTX	2.0

Deprecated	Functions

lcd.Lock()	is	deprecated,	will	be	obsolete	in	2.2.	Lua	scripts	must	now	explicitly	call
lcd.Clear()	and	re-draw	the	whole	display	if	necessary.

TODO:	research	killEvents()	and	use	of	keys	in	telemetry	scripts

Obsolete	Telemetry	Field	Names

OpenTX	since	version	2.1	provides	more	flexibility	in	the	number	and	type	of	supported
remote	sensors.	As	a	result,	several	field	name	constants	are	obsolete	and	need	to	be
modified	in	scripts	originally	written	for	OpenTX	2.0.

GPS	field	names	are	covered	in	Handling	GPS	Sensor	Data

Lipo	voltage	field	names	(LVSS)	are	covered	in	Handling	Lipo	Sensor	Data

Maintaining	compatibility	with	OpenTX	2.0

Automatic	invocation	of	the	background	function	-	Beginning	in	OpenTX	2.1	the
background()	function	is	called	automatically	prior	to	each	invocation	of	the	run()	function.
Under	2.0	you	must	explicitly	call	your	background	function	within	your	run	function.

General	Issues

163

Handling	GPS	Sensor	data
Overview

With	OpenTx	2.2	it	is	possible	to	have	multiple	GPS	sensors,	each	with	their	own	set	of
telemetry	values	which	may	have	user-assigned	names.

Value	names	are	case	sensitive	and	may	include	some	or	all	of	the	following:

GPS	(latitude	and	longitude	as	a	lua	table	containing	[lat]	and	[lng])
GSpd	(speed	in	knots)
GAlt	(altitude	in	meters)
Date	(gps	date	converted	to	local	time	as	a	lua	table	containing	[year]	[mon]	[day]	[hour]
[min]	[sec])
Hdg	(heading	in	degrees	true)

This	example	demonstrates	getting	latitude	and	longitude	from	a	sensor	with	the	default
name	of	'GPS'

Handling	GPS	Sensor	data

164

local	gpsValue	=	"unknown"

local	function	rnd(v,d)

				if	d	then

					return	math.floor((v*10^d)+0.5)/(10^d)

				else

					return	math.floor(v+0.5)

				end

end

local	function	getTelemetryId(name)

				field	=	getFieldInfo(name)

				if	field	then

						return	field.id

				else

						return	-1

				end

end

local	function	init()

		gpsId	=	getTelemetryId("GPS")

end

local	function	background()

		gpsLatLon	=	getValue(gpsId)

		if	(type(gpsLatLon)	==	"table")	then

				gpsValue	=	rnd(gpsLatLon["lat"],4)	..	",	"	..	rnd(gpsLatLon["lon"],4)

		else

				gpsValue	=	"not	currently	available"

		end

end

local	function	run(e)

		lcd.clear()

		background()	--	update	current	GPS	position

		lcd.drawText(1,1,"OpenTX	2.2	GPS	example",0)

		lcd.drawText(1,11,"GPS:",	0)

		lcd.drawText(lcd.getLastPos()+2,11,gpsValue,0)

end

return{init=init,run=run,background=background}

Handling	GPS	Sensor	data

165

Handling	Lipo	Sensor	Data
With	OpenTx	2.2	it	is	possible	to	have	multiple	Lipo	sensors,	each	with	a	user-assigned
name.	The	call	to	getValue()	returns	a	table	with	the	current	voltage	of	each	of	the	cells	it	is
monitoring.

This	example	demonstrates	getting	Lipo	cell	voltage	from	a	sensor	with	the	default	name	of
'Cels'

Example:

Handling	Lipo	Sensor	Data

166

local	cellValue	=	"unknown"

local	cellResult	=	nil

local	cellID	=	nil

local	function	getTelemetryId(name)

				field	=	getFieldInfo(name)

				if	field	then

						return	field.id

				else

						return	-1

				end

end

local	function	init()

		cellId	=	getTelemetryId("Cels")

end

local	function	background()

		cellResult	=	getValue(cellId)

		if	(type(cellResult)	==	"table")	then

				cellValue	=	""

				for	i,	v	in	ipairs(cellResult)	do

						cellValue	=	cellValue	..	i	..	":	"	..	v	..	"	"

				end

		else

				cellValue	=	"telemetry	not	available"

		end

end

local	function	run(e)

		background()

		lcd.clear()

		lcd.drawText(1,1,"OpenTX	2.2	cell	voltage	example",0)

		lcd.drawText(1,11,"Cels:",	0)

		lcd.drawText(lcd.getLastPos()+2,11,cellValue,0)

end

return{init=init,run=run,background=background}

Handling	Lipo	Sensor	Data

167

Part	V	-	Converting	OpenTX	2.1	Scripts
This	section	also	covers	some	of	the	requirements	for	scripts	that	are	necessary	for	them	to
function	properly	under	both	OpenTX	2.2.

New	features

LUA	Widgets	(Horus	only)
LUA	Themes	(Horus	only)

Changes

Lua	Themes	and	Widgets	run	in	a	separate	Lua	environment.	They	are	isolated	from
the	other	Lua	environment	which	runs	other	scripts.	This	means	they	can	not	share
variables,	etc...	(Horus	only)

Function	scripts	can	have	a		background()		function	defined	(similar	to	the	Telemetry
scripts).	It	will	be	called	periodically	when	the	switch	that	activates	it	is	FALSE.

Horus	doesn't	support	Telemetry	scripts.

Telemetry	and	Mix	scripts	maximum	file	name	length	(without	extension)	was	reduced
from	8	to	6	characters.

Telemetry	and	Mix	scripts	maximum	number	of	inputs	reduced	from	8	to	6

LCD	Functions

Function		lcd.lock()		was	removed.

New	function		lcd.refresh()	.

Default	number	alignment	changed	from	RIGHT	to	LEFT.

	lcd.getLastPos()		is	not	available	on	Horus

Functions	only	available	on	Horus:

	lcd.drawBitmap()	

	lcd.setColor()	

	lcd.RGB()	

Functions	only	available	on	Taranis:

Part	V	-	Converting	OpenTX	2.1	Scripts

168

	lcd.drawPixmap	

	lcd.drawScreenTitle	

	lcd.drawCombobox	

General	Functions

	RIGHT		added

Rotary	encoder	events	added:

	EVT_ROT_BREAK	

	EVT_ROT_LONG	

	EVT_ROT_LEFT	

	EVT_ROT_RIGHT	

Part	V	-	Converting	OpenTX	2.1	Scripts

169

Part	VI	-	Advanced	Topics
The	advanced	topics	section	covers	file	i/o,	data	sharing,	and	debugging	techniques

Part	VI	-	Advanced	Topics

170

Lua	data	sharing	across	scripts
Overview:

OpenTX	considers	all	function,	mix,	and	telemetry	scripts	to	be	'permanent'	scripts	that
share	the	same	runtime	environment.	They	are	typically	loaded	at	power	up	or	when	a	new
model	is	selected.	However,	they	are	also	reinitialized	when	a	script	is	added	or	removed
during	model	editing.

Lua	scoping	rules:

Any	variable	or	function	not	declared	local	is	implicitly	global.	Care	must	be	taken	to	avoid
unintentional	global	declarations,	and	ensure	that	the	globals	you	intentionally	declare	have
unique	names	to	avoid	conflicts	with	scripts	written	by	others.

Example:

This	example	consists	of	three	scripts

count-dn.lua	-	this	is	a	mix	script	than	can	be	run	stand	alone	to	announce	time
remaining	based	on	a	user-defined	switch	and	duration.	It	updates	two	global	variables
(gCountUp	and	gCountDown).	It	also	creates	output	values	(ctup	and	ctdn)	which	are
for	demonstration	purposes	only.
count-up.lua	-	this	is	an	optional	function	script	which	will	do	count	up	announcements
based	on	harded	coded	values.
shocount.lua	-	this	is	an	optional	telemetry	script	which	simply	shows	the	current
values	of	the	gCountUp	and	gCountDown	variables.

Installation:

count-dn.lua
copy	to	/SCRIPTS/MIXES
configure	on	the	transmitter	CUSTOM	SCRIPT	page

suggested	switch	=	"SA"
suggested	mins	=	3
suggested	sw_high	=	0

screen	image:	

Lua	data	sharing	across	scripts

171

count-up.lua
copy	to	/SCRIPTS/FUNCTIONS
configure	on	the	transmitter	SPECIAL	FUNCTIONS	page

suggested	switch	SA(down)
screen	image:	

shocount.lua
copy	to	/SCRIPTS/TELEMETRY
configure	on	the	transmitter	TELEMETRY	page
screen	image:	

Script	sources:

count-dn.lua

--	these	globals	can	be	referenced	in	function	and	telemetry	scripts

gCountUp	=	0

gCountDown	=	0

Lua	data	sharing	across	scripts

172

local	target

local	running	=	false

local	complete	=	false

local	announcements	=	{	720,	660,	600,	540,	480,	420,	360,	300,	240,	180,	120,	105,	90

,	75,	60,	55,	50,	45,	40,	35,	30,	29,	28,	27,	26,	25,	24,	23,	22,	21,	20,	19,	18,	17,	

16,	15,	14,	13,	12,	11,	10,	9,	8,	7,	6,	5,	4,	3,	2,	1,	0}

local	annIndex	--	index	into	the	announcements	table	(1	based)

local	minUnit	--	used	by	playNumber()	for	unit	announcement

local	input	=

				{

								{	"switch",	SOURCE},								--	switch	used	to	activate	count	down

								{	"mins",	VALUE,	1,	12,	2	},				--	minutes	to	count	down

								{	"sw_high",	VALUE,	0,	1,	1	}	--	0	=	active	when	low,	otherwise	active	when	hi

gh

				}

local	output	=	{"ctup",	"ctdn"	}					

local	function	init()

		local	version	=	getVersion()

		if	version	<	"2.1"	then

				minUnit	=	16		--	unit	for	minutes	in	OpenTX	2.0

		elseif	version	<	"2.2"	then

				minUnit	=	23		--	unit	for	minutes	in	OpenTX	2.1

		else

				minUnit	=	25		--	unit	for	minutes	in	OpenTX	2.2

		end

end

local	function	countdownIsRunning(switch,	sw_high)

		--	evaluate	switch	-	return	true	if	we	should	be	counting	down

		if	(sw_high	>	0)	then

				return	(switch	>	-1000)

		else

				return	(switch	<	1000)

		end

end

local	function	run(switch,	mins,	sw_high)

		local	timenow	=	getTime()	--	10ms	tick	count

		local	minutes

		local	seconds

		if	(not	countdownIsRunning(switch,	sw_high))	then

						running	=	false

						complete	=	false

						return	0,	0	--	*****	NOTE:	early	exit	*****

		end

		if	(complete)	then

				return	0,	0	--	must	reset	the	switch	before	we	go	again

Lua	data	sharing	across	scripts

173

		end

		if	(not	running)	then

				running	=	true

				target	=	timenow	+	((mins	*	60)	*	100)

				annIndex	=	1

		end

		gCountDown	=	math.floor(((target	-	timenow)	/	100)	+	.7)	--		+	is	adj.	to	for	announ

cement	lag

		gCountUp	=	(mins	*	60)	-	gCountDown

		while	gCountDown	<	announcements[annIndex]	do

				annIndex	=	annIndex	+	1	--	catch	up

		end

		if	gCountDown	==	announcements[annIndex]	then

				minutes	=	math.floor(gCountDown	/	60)

				seconds	=	gCountDown	%	60

				if	minutes	>	0	then

						playNumber(minutes,	minUnit,	0)

				end

				if	seconds	>	0	then

						playNumber(seconds,	0,	0)

				end

				annIndex	=	annIndex	+	1

		end

		if	gCountDown	<=	0	then

				playNumber(0,0,0)

				running	=	false

				gCountDown	=	0

				complete	=	true

		end

		return	gCountUp	*	10.24,	gCountDown	*	10.24

end

return	{	input=input,	output=output,	init=init,	run=run	}

count-up.lua

Lua	data	sharing	across	scripts

174

gCountUp	=	0

local	min	=	5

local	max	=	30

local	last	=	0

local	announcements	=	{	5,	10,	15,	20,	21,	22,	23,	24,	25,	26,	27,	28,	29	}

local	annIndex	=	1

local	function	run(e)

		if	not	(gCountUp	==	last)	then

				last	=	gCountUp

				for	key,	value	in	pairs(announcements)	do

								if	value	==	last	then

										playNumber(last,	0,	0)

								end

				end				

		end

end

return{run=run}

shocount.lua

--	these	globals	can	be	referenced	in	mix,	function,	and	telemetry	scripts

gCountUp	=	0

gCountDown	=	0

local	function	run(e)

		lcd.clear()

		lcd.drawText(1,1,"OpenTx	Lua	Data	Sharing",0)

		lcd.drawText(1,11,"gCountUp:",	0)

		lcd.drawText(lcd.getLastPos()+2,11,gCountUp,0)

		lcd.drawText(1,	21,	"gCountDown:",	0)

		lcd.drawText(lcd.getLastPos()+2,21,gCountDown,0)

end

return{run=run}

Lua	data	sharing	across	scripts

175

Debugging	techniques

Debugging	your	code	before	testing

A	good	editor	is	key

It	is	always	good	practice	to	check	your	code	on	syntax	before	even	testing	it.	There	are
several	good	LUA	editors	on	the	market,	some	of	them	for	free.	The	ZeroBrane
(https://studio.zerobrane.com/)	suite	is	quite	powerful,	and	very	simple	to	use.	In	the	rest	of
this	article	we	will	assume	you	use	ZeroBrane,	but	the	same	techniques	can	be	used	in	any
powerful	code	editor.

You	can	set	ZeroBrane	to	use	the	Scripts	directory	of	your	simulated	transmitter	SDCard
image	as	a	default	directory,	and	it	will	show	you	all	the	files	in	a	nice	navigation	tree.

If	you	open	a	LUA	file,	you	will	already	have	some	markup	in	your	screen,	indicating	errors
or	important	info.	In	ZeroBrane	for	instance,	a	not	declared	variable	will	always	get
underlined,	so	that	you	are	made	aware	you	forgot	to	declare	it,	or	you	redeclared	it	by
accident	afterwards	again.

Checking	if	the	code	can	be	compiled

The	editor	will	have	an	"execute	code"	option,	that	will	try	to	run	the	code	on	it's	own
interpreter	(code	processing	engine).	If	there	are	any	syntax	errors,	it	will	not	be	able	to
execute	the	code,	and	inform	you	about	the	errors.	A	common	error	in	LUA	is	using	a	single
equal	sign	(=)	in	a	condition	in	an	'if'	statement,	whereas	in	LUA	that	should	be	a	double
equal	sign	(==).	The	interpreter	will	inform	you	about	such	an	error	ocurring,	and	mention	the
line	where	you	made	the	error.

Since	the	OpenTX	LUA	environment	has	some	own	functions,	like	lcd.drawText(),	the
interpreter	will	'complain'	it	cannot	call	an	unspecified	function,	but	it	will	check	the	entire
syntax	nonetheless.

Ready	to	run	the	code

In	zerobrane,	if	you	tried	to	run	the	code,	it	will	first	save	it	if	it	could	be	interpreted	correctly.
A	common	workflow	would	be:

do	some	code	corrections	/	additions
try	to	run	the	code	in	the	editor

Debugging	techniques

176

https://studio.zerobrane.com/

if	the	code	gets	compiled,	the	edited	LUA	file	gets	saved	automatically
run	the	code	in	the	transmitter	simulator
check	for	the	desired	functionality
restart	this	cycle

The	lua	debug	viewer
In	the	later	versions	of	the	companion	software,	a	LUA	debug	screen	is	available.	So	once
you	start	your	just	syntaxically	verified	and	saved	LUA	script,	you	can	follow	some	of	it's
output	and	actions	in	the	debug	screen.	It	will	tell	you	where	and	in	what	line	an	eventual
crash	occured.

Using	a	script	loader
If	you	made	some	code	changes,	chances	are	that	you	have	to	do	a	whole	sequence	of	key-
clicks	and	actions	on	the	transmitter	simulator	in	order	to	retest	the	same	script	after	those
changes.

You	can	substatially	reduce	the	effort	of	all	this	by	using	a	script	loader	in	your	transmitter.
This	is	nothing	more	then	a	function	that	will	load	and	run	your	code.	If	you	press	the	enter
button,	it	will	unload	the	current	code,	and	ask	if	you	want	to	run	the	code	again.	So,	with
just	two	clicks,	you	can	unload	the	running	code	and	reload	your	updated	code.	On	the
Taranis	simulator,	you	can	also	reload	the	LUA	scripts	environment	with	just	a	buttonclick.

An	example	of	such	a	script	is	found	under	the	notes.	You	can	adapt	it	for	other	types	of
scripts	of	course.

Notes

Script	Loader

This	script	loader	will	load	the	file	/SCRIPTS/TELEM/telem1.lua,	run	it,	and	wait	for	an	Enter
Break	event.	Once	received,	it	will	unload	the	code	and	wait	for	a	next	Enter	Break	event.

Debugging	techniques

177

local	fileToLoad="/SCRIPTS/TELEM/telem1.lua"

local	active	=	true

　

local	thisPage={}

local	page={}

　

local	function	clearTable(t)

		if	type(t)=="table"	then

				for	i,v	in	pairs(t)	do

						if	type(v)	==	"table"	then

								clearTable(v)

						end

						t[i]	=	nil

				end

		end

		collectgarbage()

		return	t	

end

thisPage.init=function(...)

		if	active	then

				page=dofile(fileToLoad)

				page.init(...)

		end

		return	true

end

　

thisPage.background=function(...)

		if	active	then

				page.background(...)

		end

		return	true

end

　

thisPage.run=function(...)

		if	active	then

				page.run(...)

				active=	not	(...==EVT_ENTER_BREAK)

		else

				lcd.drawText(15,	2,	fileToLoad,	0)

				lcd.drawText(15,	20,	"disabled",	0)

				lcd.drawText(15,	40,"press	enter-button	to	activate",0)

				clearTable(page)

				active=	(...==EVT_ENTER_BREAK)

				thisPage.init()

		end

		return	not	(...==EVT_MENU_BREAK)		

end

　

return	thisPage

Debugging	techniques

178

Debugging	techniques

179

Speed	and	Memory	Optimization	Tricks

Faster	getValue()
Normally	one	uses	getValue()	function	with	the	source/filed	name	like	so:

local	foo	=	getValue("bar")

This	works	and	is	recommended	method	for	portability.	But	if	a	particular	script	needs	to	get
the	value	of	certain	field	a	lot,	then	it	is	faster	to	use	this	syntax:

local	my_id	=	getFiledInfo("bar").id				--	here	we	get	the	numerical	id	of	the	filed	"

bar"

local	function	run_a_lot()

		local	my_value	=	getValue(my_id)						--	exactly	the	same	effect	as	local	my_value	=

	getValue("bar"),	but	faster

end

Why	is	this	method	faster?	With	the	function	getFieldInfo(name)	we	get	the		numerical	id		of
the	wanted	filed.	The	function	has	to	find	the	requested	value	by	its	name	in	the	table	of	all
available	sources.	That	search	takes	some	time.

When	we	use	this	syntax	the	search	is	only	done	once.	In	comparison	in	the	first	example
the	search	must	be	performed	every	time		getValue("bar")		is	called.

So	when	the		getValue(my_id)		is	called	the	search	can	be	skipped	and	the	requested	value
if	fetched	directly.

Of	course	there	is	a	trade-of,	the	second	example	uses	little	more	memory	(for	variable
	my_id).

Speed/memory	optimizaton	tricks

180

Part	VII	-	Appendix
Various	additional	documents

Part	VII	-	Appendix

181

Fonts

Taranis	X7	&	X9	series

English	(Default)

Font	Set Height Available	Characters

XXLSIZE 38px

DBLSIZE 16px

MIDSIZE 12px

0	Default 8px

SMLSIZE 6px

Czech

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Finnish

Fonts

182

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

SMLSIZE

0	Default

French

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

German

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Italian

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Fonts

183

Polish

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Portuguese

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Spanish

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Swedish

Fonts

184

Font	Set Available	Characters

XXLSIZE --

DBLSIZE

MIDSIZE

0	Default

SMLSIZE

Fonts

185

OpenTx	2.2	Units	reference
Index Unit Defined	as

0 Raw	unit	(no	unit) UNIT_RAW

1 Volts UNIT_VOLTS

2 Amps UNIT_AMPS

3 Milliamps UNIT_MILLIAMPS

4 Knots UNIT_KTS

5 Meters	per	Second UNIT_METERS_PER_SECOND

6 Feet	per	Second UNIT_FEET_PER_SECOND

7 Kilometers	per	Hour UNIT_KMH

8 Miles	per	Hour UNIT_MPH

9 Meters UNIT_METERS

10 Feet UNIT_FEET

11 Degrees	Celsius UNIT_CELSIUS

12 Degrees	Fahrenheit UNIT_FAHRENHEIT

13 Percent UNIT_PERCENT

14 Milliamp	Hour UNIT_MAH

15 Watts UNIT_WATTS

16 Milliwatts UNIT_MILLIWATTS

17 dB UNIT_DB

18 RPM UNIT_RPMS

19 G UNIT_G

20 Degrees UNIT_DEGREE

21 Radians UNIT_RADIANS

22 Milliliters UNIT_MILLILITERS

23 Fluid	Ounces UNIT_FLOZ

24 Hours UNIT_HOURS

25 Minutes UNIT_MINUTES

26 Seconds UNIT_SECONDS

Units

186

27 UNIT_CELLS

28 UNIT_DATETIME

29 UNIT_GPS

30 UNIT_BITFIELD

31 UNIT_TEXT

Units

187

	OpenTX 2.2 Lua Reference Guide
	Introduction
	Acknowledgments
	Getting Started

	Part I - Script Type Overview
	Mix Scripts
	Telemetry Scripts
	One-Time Scripts
	Wizard Script
	Function Scripts
	Widget Scripts
	Theme Scripts

	Part II - OpenTX Lua API Programming Guide
	Input Table Syntax
	Output Table Syntax
	Init Function Syntax
	Run Function Syntax
	Return Statement Syntax
	Included Lua Libraries
	io Library

	Part III - OpenTX Lua API Reference
	Constants
	Key Event Constants

	General Functions
	GREY()
	crossfireTelemetryPop()
	crossfireTelemetryPush()
	defaultChannel(stick)
	defaultStick(channel)
	getDateTime()
	getFieldInfo(name)
	getFlightMode(mode)
	getGeneralSettings()
	getRAS()
	getRSSI()
	getTime()
	getValue(source)
	getVersion()
	killEvents(key)
	loadScript(file [, mode], [,env])
	playDuration(duration [, hourFormat])
	playFile(name)
	playHaptic(duration, pause [, flags])
	playNumber(value, unit [, attributes])
	playTone(frequency, duration, pause [, flags [, freqIncr]])
	popupConfirmation(title, event)
	popupInput(title, event, input, min, max)
	popupWarning(title, event)
	setTelemetryValue(id, subID, instance, value [, unit [, precision [, name]]])
	sportTelemetryPop()
	sportTelemetryPush()

	Model Functions
	model.defaultInputs()
	model.deleteInput(input, line)
	model.deleteInputs()
	model.deleteMix(channel, line)
	model.deleteMixes()
	model.getCurve(curve)
	model.getCustomFunction(function)
	model.getGlobalVariable(index [, flight_mode])
	model.getInfo()
	model.getInput(input, line)
	model.getInputsCount(input)
	model.getLogicalSwitch(switch)
	model.getMix(channel, line)
	model.getMixesCount(channel)
	model.getModule(index)
	model.getOutput(index)
	model.getTimer(timer)
	model.insertInput(input, line, value)
	model.insertMix(channel, line, value)
	model.resetTimer(timer)
	model.setCurve(curve, params)
	model.setCustomFunction(function, value)
	model.setGlobalVariable(index, flight_mode, value)
	model.setInfo(value)
	model.setLogicalSwitch(switch, value)
	model.setModule(index, value)
	model.setOutput(index, value)
	model.setTimer(timer, value)

	Lcd Functions
	Lcd Functions Overview
	lcd.RGB(r, g, b)
	lcd.clear([color])
	lcd.drawBitmap(bitmap, x, y [, scale])
	lcd.drawChannel(x, y, source, flags)
	lcd.drawCombobox(x, y, w, list, idx [, flags])
	lcd.drawFilledRectangle(x, y, w, h [, flags])
	lcd.drawGauge(x, y, w, h, fill, maxfill [, flags])
	lcd.drawLine(x1, y1, x2, y2, pattern, flags)
	lcd.drawNumber(x, y, value [, flags])
	lcd.drawPixmap(x, y, name)
	lcd.drawPoint(x, y)
	lcd.drawRectangle(x, y, w, h [, flags [, t]])
	lcd.drawScreenTitle(title, page, pages)
	lcd.drawSource(x, y, source [, flags])
	lcd.drawSwitch(x, y, switch, flags)
	lcd.drawText(x, y, text [, flags])
	lcd.drawTimer(x, y, value [, flags])
	lcd.getLastLeftPos()
	lcd.getLastPos()
	lcd.getLastRightPos()
	lcd.refresh()
	lcd.setColor(area, color)

	Bitmap Functions
	Bitmap.getSize(name)
	Bitmap.open(name)

	Part IV - Converting OpenTX 2.0 Scripts
	General Issues
	Handling GPS Sensor data
	Handling Lipo Sensor Data

	Part V - Converting OpenTX 2.1 Scripts
	Part VI - Advanced Topics
	Lua data sharing across scripts
	Debugging techniques
	Speed/memory optimizaton tricks

	Part VII - Appendix
	Fonts
	Units

